Document Title

Engineering Services Report

Project

Kishoge/Clonburris, Lot 2, Site 4

Client

South Dublin County Council

KSG4-CSC-ZZ-XX-RP-C-0002

Job No. D116

31 March 2025

DOCUMENT STATUS						
File Location: J:\D_JOBS\Job-D116\B_DOCUMENTS\1.0 Planning\2.0 ESR\KSG4-CSC-ZZ-XX-RP-C- 0002_Engineering Services Report.docx						
BS 1192	KSG4-CSC-ZZ-XX-RP-C-0002					
Version	Purpose of Document	Author	Reviewed by	Approved by	Issue Date	
P01	DRAFT ISSUE FOR EIAR	JF	SS	OS	10.01.2025	
P02	ISSUED FOR PLANNING	JF	SS	OS	31.03.2025	

Disclaimer

This document has been prepared for the exclusive use of our Client and unless otherwise agreed in writing with KP & Associates Consulting Engineers Ltd. T/A CS Consulting no other party may use, make use of or rely on the contents of this document. The document has been compiled using the resources agreed with the Client and in accordance with the agreed scope of work. KP & Associates Consulting Engineers Ltd. T/A CS Consulting accepts no responsibility or liability for any use that is made of this document other than for the purposes for which it was originally commissioned and prepared, including by any third party or use by others of opinions or data contained in this document. KP & Associates Consulting Engineers Ltd. T/A CS Consulting supplied by others and contained within this report. It is expressly stated that no independent verification of any documents or information supplied by others for this document has been made. KP & Associates Consulting Engineers Ltd. T/A CS Consulting has used reasonable skill, care and diligence in compiling this document and no warranty is provided as to the report's accuracy.

Copyright

The contents and format of this report are subject to copyright owned by KP & Associates Consulting Engineers Ltd. T/A CS Consulting unless that copyright has been legally assigned by us to another party or is used by KP & Associates Consulting Engineers Ltd. T/A CS Consulting Under Licence. This report may not be copied or used for any purpose other than the intended purpose.

ENGINEERING SERVICES REPORT

KISHOGE/CLONBURRIS, LOT 2, SITE 4

CONTENTS

1.0	INTRO	DUCTION	. 1
	1.1	REPORT OVERVIEW	. 1
2.0	SITE LC	DCATION, CONTEXT, AND PROPOSED DEVELOPMENT	. 3
	2.1	Site Location	. 3
	2.2	Permitted Clonburris Southern Link Road	. 4
	2.3	Existing Subject Site Condition	. 5
	2.4	Surrounding Drainage and Water Supply Infrastructure	. 5
	2.5	Description of Proposed Development	. 5
3.0	POTA	BLE WATER SUPPLY	. 7
	3.2	Potable Water Demand	. 8
	3.3	Proposed Water Supply Arrangements	. 9
	3.4	Uisce Éireann Liaison	10
	3.5	Applicable Design Standards	10
4.0	FOUL	DRAINAGE	11
	4.1	Existing Foul Drainage Infrastructure	11
	4.2	Foul Effluent Generation	12
			. 2
	4.3	Proposed Foul Drainage Arrangements	
	4.3 4.4		13
5.0	4.4	Proposed Foul Drainage Arrangements	13 14
5.0	4.4	Proposed Foul Drainage Arrangements Uisce Éireann Liaison	13 14 15
5.0	4.4 SURFA	Proposed Foul Drainage Arrangements	13 14 15 15
5.0	4.4 SURFA 5.1	Proposed Foul Drainage Arrangements	13 14 15 15 15
5.0	4.4 SURFA 5.1 5.2	Proposed Foul Drainage Arrangements	13 14 15 15 15 16
5.0	4.4 SURFA 5.1 5.2 5.4	Proposed Foul Drainage Arrangements	13 14 15 15 15 16
5.0	4.4 SURFA 5.1 5.2 5.4 5.5	Proposed Foul Drainage Arrangements	13 14 15 15 16 16 18

5.9	Works to Existing Ditches	23
-----	---------------------------	----

FIGURES

Figure 1 – Location of subject lands	3
Figure 2 – Subject lands extents and environs	4
Figure 3 – Extract from DBFL Surface Water Management Plan	5
Figure 4 – Existing local water supply network	7
Figure 5 – Uisce Éireann local foul sewer network	11
Figure 6 – The four pillars of SuDS design	19

TABLES

Table 1 – Green Roof Coverage	21
Table 2 – Interception and Treatment Volume Requirements	22

APPENDICES

- APPENDIX A DRAWINGS
- APPENDIX B IRISH WATER CONFIRMATION OF FEASIBILITY
- APPENDIX C STORM DRAINAGE CALCULATIONS

1.0 INTRODUCTION

Cronin & Sutton Consulting Engineers (CS Consulting) have been commissioned by South Dublin County Council (SDCC) to prepare this Engineering Services Report in support of a Part 10 Planning Application for a residential development at Kishoge/Clonburris, County Dublin.

The site forms part of the overall Clonburris Strategic Development Zone (SDZ) lands which encompass 280 hectares located between Lucan, Liffey Valley, Clondalkin and Adamstown, Co. Dublin. Clonburris Infrastructure Limited (CIL) was set up by all landowners within the overall SDZ (including South Dublin County Council) to examine the infrastructural works required to allow the development of individual land parcels in a cohesive manner. This includes the Southern Link Road (SLR) and its associated services. The CIL have produced a series of strategic infrastructural documents, to support the planning application of the infrastructure works and were granted planning permission by SDCC under Plan. Reg Ref. SDZ20A/0021 in August 2021. The CIL are currently at the Construction Stage of the SLR, foul and surface water networks and associated services. CS Consulting have undertaken regular coordination meetings with the SLR construction team to coordinate the foul, surface and water connection points to service the development.

The current proposals for 436 units are a mix of social and affordable single, 2 and 3 storey housing units, apartment, duplex and triplex blocks. In addition, there will be a creche, retail units, pavilion and the existing Grange house included in the development.

1.1 **REPORT OVERVIEW**

This report details the following aspects of the proposed development:

- Potable Water Supply
- Foul Drainage
- Surface Water Drainage

In preparing this report, CS Consulting has made reference to the following:

- South Dublin County Council Development Plan 2022–2028
- Building Regulations 2010 (Part H)
- Greater Dublin Regional Code of Practice for Drainage Works (Version 6)
- Greater Dublin Strategic Drainage Study (GDSDS) 2005
- The Planning System and Flood Risk Management: Guidelines for Planning Authorities 2009 (Flood Risk Management Guidelines)
- Uisce Éireann Code of Practice for Water Infrastructure (2020)
- Uisce Éireann Code of Practice for Wastewater Infrastructure (2020)

- Uisce Éireann Drainage and Supply Records
- Clonburris Strategic Development Zone Planning Scheme 2019
- Clonburris Surface Water Management Plan 2020

The Engineering Services Report is to be read in conjunction with the engineering drawings and documents submitted by CS Consulting and with all other documentation submitted by other members of the project design team. The following drawings in particular should be referred to:

- 190113B-DBFL-0500-SP-DR-C-1053 Proposed Watermain Layout
- 190113B-DBFL-0500-SP-DR-C-1054 Proposed Watermain Layout
- 190113B-DBFL-0500-SP-DR-C-1004 Proposed Drainage Layout
- 190113B-DBFL-0500-SP-DR-C-1005 Proposed Drainage Layout
- KSG4-CSC-XX-XX-DR-C-0001 Existing Site Layout and Topo Survey
- KSG4-CSC-XX-XX-DR-C-0003 Proposed Watermain Layout
- KSG4-CSC-XX-XX-DR-C-0004 Proposed Drainage Layout
- KSG4-CSC-XX-XX-DR-C-0026 Proposed Watercourse Diversion and Culverting
- KSG4-CSC-XX-XX-DR-C-0034 Flood Compensatory Storage and Culvert Details

2.0 SITE LOCATION, CONTEXT, AND PROPOSED DEVELOPMENT

2.1 Site Location

The application site is situated within the broader Clonburris Strategic Development Zone (SDZ), covering 280 hectares between Lucan, Liffey Valley, Clondalkin, and Adamstown in County Dublin. It is bordered to the north by the Dublin-Kildare railway line, to the south by the Grand Canal, to the east by the Kilmahuddrick Stream, and to the west by the underconstruction SLR, Clonburris regional attenuation pond and parklands.

Figure 1 – Location of subject lands (sources: EPA, OSi, OSM Contributors, Google)

The location of the subject lands is shown in **Figure 1**; their extents and environs are shown in more detail in **Figure 2**.

Figure 2 – Subject lands extents and environs (sources: NTA, GoCar, Toyota, OSi, OSM Contributors, Microsoft)

2.2 Permitted Clonburris Southern Link Road

The permitted Clonburris Southern Link Road extends across the SDZ Lands, connecting Adamstown and Cappagh. This road has been outlined in the Clonburris Planning Scheme (2019) and is approved under the permission of SDCC Reg. Ref. SDZ20A/0021. The road and drainage infrastructure shall form part of the public roads and drainage networks providing access and services for the future development of the southern half of the overall Strategic Development Zone (SDZ) lands.

The subject development site is located within Sub-Catchment 5 of the SWMP. Refer to **Figure 3** – Extract from DBFL Surface Water Management Plan for an extract showing the site's location in relation to Sub-Catchment 5, with the site indicatively outlined. The Clonburris regional attenuation pond ('ATN-02'), proposed by the CIL, is approximately 100m downstream of the site and is designed to attenuate the Sub-Catchment 5, as shown in red on **Figure 3**. In addition, the pond has been designed to provide treatment volumes for 15mm of rainfall for Sub-Catchment 5.

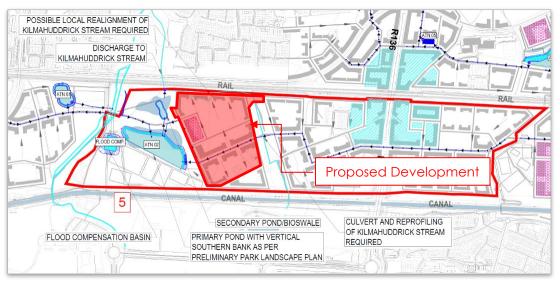


Figure 3 – Extract from DBFL Surface Water Management Plan (sources: DBFL)

2.3 Existing Subject Site Condition

The development site is primarily greenfield; however, parts of it have been utilised by the SDCC Parks Department as a depot and include existing uses such as traveller accommodation, Lynch's Lane, and the listed Grange House building.

2.4 Surrounding Drainage and Water Supply Infrastructure

DBFL drawings in **Appendix A** show the SLR water supply and drainage in the vicinity of the development site. This identifies elements of the surrounding:

- Under construction water distribution network
- Under construction foul sewer network
- Under construction surface water drainage infrastructure

The surrounding water distribution infrastructure, foul sewer infrastructure, and surface water drainage infrastructure are described in isolation in Sections 3, 4, and 5 of this report, respectively.

2.5 Description of Proposed Development

A Part 10 Planning Application for a primarily residential development located within the Clonburris SDZ lands. The development site extends to c. 11.7ha and is bounded to the north by the Irish Rail Railway Line and to the south, east and west by lands zoned for development. The site is bisected by the permitted South Link Street (PL Reg Ref. SDZ20A/0021) from which vehicular, cycle and pedestrian access shall be provided.

The proposed development comprises 436no. residential units in a mix of house, apartment, duplex and triplex units comprising 141no. houses (133no. 3-bedroom and 8no. 4-bedroom), 124no. apartments units (62no. 1-bedroom and 62no. 2-bedroom), 106no. duplex units (53no. 2-bedroom and 53no. 3-bedroom), 57no. triplex units (57no. 2-bedroom), 3no. age-friendly apartment units (3no. 1-bedroom), and 5no. garden apartment units (5no. 2-bedroom).

Non-residential accommodation proposed (c. 1,550 m2 total) includes: A childcare facility (c. 544sqm), retail unit (c. 150sqm), employment use within the existing Grange House (c. 173 sq m) and a community building/ pavilion (c. 683 sq m) fronting Griffeen Valley Park.

All associated and ancillary site development and infrastructural works including 408no. surface level car parking, 793no. bicycle parking (591no. long term and 202no. short term spaces), hard and soft landscaping and boundary treatment works, including public, communal and private open space, public lighting, substations, bin stores and foul and water services.

3.0 POTABLE WATER SUPPLY

3.1 Existing Water Supply Infrastructure

There is an existing 100mm diameter watermain that runs within Lynch's Lane located along the southern boundary of the subject development site. It currently services the SDCC Parks Depot, Grange House and the existing traveller accommodation. **Figure 4** shows an extract of the relevant local Uisce Éireann water supply records.



Figure 4 – Existing local water supply network (map data and imagery: Uisce Éireann, OSM Contributors)

The SLR water supply infrastructure serving this development is currently under construction and was designed by DBFL under planning permission Reg. Ref. SDZ20A/0021. As these works have not yet been taken in charge, they are not reflected in the Uisce Éireann records.

DBFL drawings **190113B-DBFL-0500-SP-DR-C-1053** and **190113B-DBFL-0500-SP-DR-C-1054** show the local watermain network traversing the subject development site within the completed SLR. This network includes:

- 150mm internal diameter distributer mains
- 200mm internal diameter trunk main

150mm diameter and 200mm internal diameter temporary dead-end spurs extend from these watermains into the subject site, at various locations along the extent of the SLR. SLR watermain drawings are provided in **Appendix A**.

3.2 Potable Water Demand

The proposed development comprises a total of 436no. residential units, 1 no. creche, 1no. retail, 1 no. pavilion and 1 no. Grange House (offices).

3.2.1 <u>Residential</u>

The Uisce Éireann Code of Practice for Water Infrastructure specifies an average potable water demand of 150 litres per person per day for domestic dwellings, and an average occupancy of 2.7 persons per residential unit. Therefore, has a design population of 1,177 people (1177 pe), and the average potable water demand of the proposed development may be calculated as:

$Avg. Demand = 1177pe \times 150l/day/pe = 176,550l/day = 2.55l/s$

The peak potable water demand is calculated by applying a domestic peaking factor (Pf_{DOM}) of 5, in accordance with the Uisce Éireann Code of Practice for Water Infrastructure:

Peak Demand = Avg. Demand $\times Pf_{DOM} = 2.55l/s \times 5 = 12.77l/s$

3.2.2 <u>Creche</u>

The Uisce Éireann Code of Practice for Water Infrastructure specifies an average potable water demand of 90 litres per person per day for a creche, and an average occupancy of 3.5 persons per m². Therefore, has a design population of 166 people (166 pe), and the average potable water demand of the creche may be calculated as:

$Avg. Demand = 166pe \times 90l/day/pe = 14,940l/day = 0.21l/s$

The peak potable water demand is calculated by applying a domestic peaking factor (Pf_{DOM}) of 5, in accordance with the Uisce Éireann Code of Practice for Water Infrastructure:

Peak Demand = *Avg. Demand* × Pf_{DOM} = 0.22*l/s* × 5 = 1.05*l/s*

3.2.3 Office and Retail

The Uisce Éireann Code of Practice for Water Infrastructure specifies an average potable water demand of 60 litres per person per day for an office or retail, and an average occupancy of 7.5 persons per m². Therefore, has a design population of 87 people (87 pe), and the average potable water demand of the office and retail units may be calculated as:

$Avg.Demand = 87pe \times 60l/day/pe = 5,220l/day = 0.06l/s$

The peak potable water demand is calculated by applying a domestic peaking factor (Pf_{DOM}) of 5, in accordance with the Uisce Éireann Code of Practice for Water Infrastructure:

Peak Demand = *Avg. Demand* × Pf_{DOM} = 0.06*l/s* × 5 = 0.38*l/s*

3.2.4 <u>Pavilion</u>

The Uisce Éireann Code of Practice for Water Infrastructure specifies an average potable water demand of 40 litres per person per day for the pavilion, and an average occupancy of 7.5 persons per m². Therefore, has a design population of 80 people (80 pe), and the average potable water demand of the creche may be calculated as:

$Avg.Demand = 80pe \times 40l/day/pe = 3,200l/day = 0.05l/s$

The peak potable water demand is calculated by applying a domestic peaking factor (Pf_{DOM}) of 5, in accordance with the Uisce Éireann Code of Practice for Water Infrastructure:

Peak Demand = Avg. Demand
$$\times Pf_{DOM} = 0.05l/s \times 5 = 0.23l/s$$

3.2.5 <u>Total Potable Water Demand</u>

Total Avg. Demand = 2.87l/sTotal Peak Demand = 14.43l/s

3.3 Proposed Water Supply Arrangements

It is proposed to provide 100mm and 150mm internal diameter mains to service this development. These mains shall be interconnected and fed by new connections to the 150mm diameter and 200mm diameter spurs provided along in the SLR.

Each apartment block shall have 1no. connection to supply its residential elements. Individual, smaller connections shall be provided to the non-residential elements within each apartment block. The exact details of all connections will be finalised at detailed design stage, through the Uisce Éireann connection application process.

Each individual residential dwelling fronting the SLR will have its own connection to the 180mm diameter distributer main within the SLR. Spurs to service these dwellings will be provided during the SLR construction, having been coordinated through regular meetings with the CIL team.

Refer to CS Consulting drawing nos. **KSG4-CSC-XX-XX-DR-C-0003** for details of the development's proposed watermain arrangements.

3.4 Uisce Éireann Liaison

A Pre-Connection Enquiry (PCE) was submitted to Uisce Éireann on the basis of a 436-unit residential development on the subject site. A Confirmation of Feasibility was received in response on the 12th of August 2024, stating that connection of such a development to the public water supply network (via the existing private water supply infrastructure) would be feasible without infrastructure upgrade by Uisce Éireann. This Confirmation of Feasibility is provided in **Appendix B**. In addition, a Statement of Design Acceptance was received from Uisce Éireann on 26th March 2025, stating that Uisce Éireann have no objections to the proposals. This Statement of Design Acceptance is provided as **Appendix B**.

3.5 Applicable Design Standards

The proposed development's water supply arrangements have been designed in accordance with the Uisce Éireann Code of Practice for Water Infrastructure (document IW-CDS-5020-03) and its associated Standard Details (document IW-CDS-5020-01), with respect to watermain layout, pipe diameters, and connection details.

4.0 FOUL DRAINAGE

4.1 Existing Foul Drainage Infrastructure

Figure 5 – Uisce Éireann local foul sewer network (map data and imagery: Uisce Éireann, OSM Contributors)

There are no Uisce Éireann foul sewers within the immediate vicinity of the subject development site. Within the Clonburris masterplan area, a local drainage network has been designed and is under construction under the SLR permission (Reg. Ref. SDZ20A/0021). These local foul sewers are under construction and are not yet shown on Uisce Éireann records. All future foul effluent shall be collected by this network and will drain to the site of Pumping Station No.2 wastewater pumping station (WwPS); this is likewise under construction under the SLR permission and has not yet been transferred to Uisce Éireann's control. A foul rising main, also under construction and not under Uisce Éireann's ownership, shall convey the pumped effluent to an existing Uisce Éireann trunk foul sewer located the east.

DBFL drawing nos. **190113B-DBFL-0500-SP-DR-C-1004** and **190113B-DBFL-0500-SP-DR-C-1005** show the local foul drainage network traversing the subject development site and the foul sewers under construction for the extents of the SLR. Proposed 150mm diameter and 225mm diameter spurs extend from these foul sewers into the subject development site, at various locations along the extent of the SLR.

4.2 Foul Effluent Generation

The proposed development shall comprise 436 no. residential units, 1 no. creche, 1no. retail, 1 no. pavilion and 1 no. Grange House.

4.2.1 <u>Residential</u>

The Uisce Éireann Code of Practice for Wastewater Infrastructure specifies an average foul effluent flow rate of 165 litres per person per day for domestic dwellings (150 litres per person per day, plus a 10% allowance for external infiltration) and an average occupancy of 2.7 persons per residential unit. The development's maximum design population is therefore 1,177 people (1177 pe), and the maximum average effluent flow (dry weather flow or DWF) to be generated by the proposed development may be calculated as:

$$DWF = 1177 pe \times 165 l/day/pe = 194,205 l/day = 2.248 l/s$$

For a population of between 1,001 and 5,000 people, the peak effluent flow (Design Flow) is calculated by applying a domestic peaking factor (Pf_{DOM}) of 3:

Design Flow = DWF
$$\times$$
 Pf_{DOM} = 2.248l/s \times 3 = 6.744l/s

4.2.2 <u>Creche</u>

The Uisce Éireann Code of Practice for Wastewater Infrastructure specifies an average foul effluent flow rate of 99 litres per person per day for a creche (90 litres per person per day, plus a 10% allowance for external infiltration) and an average occupancy of 3.5 persons per m². The creche's maximum design population is therefore 166 people (166 pe), and the maximum average effluent flow (dry weather flow or DWF) to be generated by the creche may be calculated as:

$$DWF = 166pe \times 99l/day/pe = 16,434l/day = 0.190l/s$$

For a commercial unit, the peak effluent flow (Design Flow) is calculated by applying a peaking factor (Pf_{DOM}) of 4.5:

Design Flow = DWF \times Pf_{DOM} = 0.190l/s \times 4.5 = 0.855l/s

4.2.3 Office and Retail

The Uisce Éireann Code of Practice for Wastewater Infrastructure specifies an average foul effluent flow rate of 66 litres per person per day for an office or retail (60 litres per person per day, plus a 10% allowance for external infiltration) and an average occupancy of 7.5 persons per m². The office and retail maximum design population is therefore 161 people (161 pe), and

the maximum average effluent flow (dry weather flow or DWF) to be generated by the office and retail may be calculated as:

$$DWF = 161pe \times 66l/day/pe = 10,626l/day = 0.123l/s$$

For a commercial unit, the peak effluent flow (Design Flow) is calculated by applying a peaking factor (Pf_{DOM}) of 4.5:

Design Flow = DWF \times Pf_{DOM} = 0.123l/s \times 4.5 = 0.554l/s

4.2.4 <u>Pavilion</u>

The Uisce Éireann Code of Practice for Wastewater Infrastructure specifies an average foul effluent flow rate of 44 litres per person per day for the pavilion (40 litres per person per day, plus a 10% allowance for external infiltration) and an average occupancy of 7.5 persons per m². The pavilion's maximum design population is therefore 80 people (80 pe), and the maximum average effluent flow (dry weather flow or DWF) to be generated by the pavilion may be calculated as:

$$DWF = 80pe \times 44l/day/pe = 3,520l/day = 0.041l/s$$

For a commercial unit, the peak effluent flow (Design Flow) is calculated by applying a peaking factor (Pf_{DOM}) of 4.5:

Design Flow = DWF \times Pf_{DOM} = 0.041l/s \times 4.5 = 0.183l/s

4.2.5 <u>Total Foul Effluent Generation</u>

Total DWF = 2.602l/s

Total Design Flow = 8.336l/s

4.3 Proposed Foul Drainage Arrangements

It is proposed to discharge all foul effluent from the proposed development by gravity to the foul sewers in the SLR. Throughout the development site and at each connection, the manholes within the site shall be in accordance with SDCC and Uisce Éireann taken in charge requirements, and accessible for maintenance purposes. The final number and specifications of these connections to the external foul drainage network will be finalised at detailed design stage, through the Uisce Éireann connection application process.

Each individual residential dwelling fronting the SLR will have its own connection to the 300mm diameter foul sewer within the SLR. Spurs to service these dwellings shall be provided during the SLR construction, having been coordinated through regular meetings with the CIL team.

Please refer to CS Consulting drawing nos. **KSG-CSC-XX-XX-DR-C-0004** for details of the proposed foul drainage network layout.

4.4 Uisce Éireann Liaison

A Pre-Connection Enquiry (PCE) was submitted to Uisce Éireann on the basis of a 436-unit residential development on the subject site. A Confirmation of Feasibility was received in response on the 12th of August 2024, stating that connection of such a development to the public wastewater network (via the SLR wastewater infrastructure) would be feasible without infrastructure upgrade by Uisce Éireann. This Confirmation of Feasibility is provided as **Appendix B**. In addition, a Statement of Design Acceptance was received from Uisce Éireann on 26th March 2025, stating that Uisce Éireann have no objections to the proposals. This Statement of Design Acceptance is provided as **Appendix B**.

4.5 Applicable Design Standards

The proposed development's foul drainage network, including layout, pipe diameters, pipe gradients, and connection details has been designed in accordance with:

- the Uisce Éireann Code of Practice for Wastewater Infrastructure (document IW-CDS-5030-03) and its associated Standard Details (document IW-CDS-5030-01).
- the Greater Dublin Regional Code of Practice for Drainage Works (Version 6).
- Part H of the Building Regulations 2010.

5.0 SURFACE WATER DRAINAGE

5.1 Site Topography

The development site has a general fall to the north. The only topographical variations within the site itself are watercourses and some temporary berms formed by previous site clearance works; these are for the most part less than 3.0m in height. With the exception of these, the highest point within the site (at its south westernmost corner) has an elevation of 60.14m aOD, while its lowest point (at its northern westernmost corner) is at 54.32m aOD. Please refer to CS Consulting drawings nos. **KSG4-CSC-XX-XX-DR-C-0001** for a topographical survey of the development site and environs.

5.2 Existing Land Drainage Features

The Kilmahuddrick Stream flows south to north then east to west along the eastern and northern boundaries of the site. This stream shall be retained, and a Riparian Corridor shall be provided to ensure ecological considerations are maintained. The stream has been referred to and incorporated into the Surface Water Management Plan (SWMP).

Several ditches are present on the site. Ditch A originates at the southwestern corner of the site, flows northward through the site, and exits along the western boundary, eventually discharging into the regional attenuation pond established as part of the SLR CIL works. Ditch C begins at the southern boundary via an existing 500mm culvert, flows north through the development, turns 90 degrees to the right, and exits the site along the eastern boundary, discharging into the Kilmahuddrick Stream. Two additional ditches of lesser significance are located along the southern and northern boundaries. Please refer to CS Consulting drawing nos. **KSG4-CSC-XX-XX-DR-C-0026** for existing ditch locations.

During a site visit in November 2024, CS Consulting observed that the ditches contained no water levels or flow. The catchment areas for these ditches will undergo further investigation during the detailed design phase. As part of the CIL SLR works, similar to other ditches across the SDZ, the drainage paths shall be maintained across the proposed SLR until their upstream catchments are removed as part of the overall development drainage.

5.3 Surface Water Management Plan (Dec 2020)

The DBFL/CIL Surface Water Management Plan (Dec 2020) has been informed by the Surface Water Strategy (undertaken by JBA in Sept 2017) as part of the overall Clonburris SDZ. The report calculated a design discharge rate for the overall SDZ of 3.3 l/s/ha and adopted a

design discharge rate of 3.1 I/s/ha in the design. This supersedes the JBA Surface Water Strategy, which assumed an allowable rate of 2 I/s/ha.

DBFL have used a greenfield run off (QBAR) to design the attenuation volume, which is in line with the GDSDS criterion 4 (river flood protection) for new developments, which states "maximum discharge rate of QBAR or 2 l/s/ha, whichever is greater, for all attenuation storage where separate long-term storage cannot be provided". As the calculated QBAR was greater than 2 l/s/ha and "no long-term" storage will be provided, the QBAR should be used as runoff rate for the design of all attenuation storage.

5.4 Existing Surface Water Drainage Network

Within the Clonburris SDZ masterplan area, a local surface water drainage network was designed and is under construction under the masterplan permission (Reg. Ref. SDZ20A/0021); this is shown on DBFL drawing nos. **190113B-DBFL-0500-SP-DR-C-1004** and **190113B-DBFL-0500-SP-DR-C-1005**. These local surface water sewers are not yet fully constructed. All runoff collected by this network drains to the Clonburris regional attenuation ponds, which are located adjacent to the SLR and approximately 100m from the western boundary of the subject development site. These attenuation ponds discharge to the Kilmahuddrick Stream at a controlled rate of 209 I/s, as permitted under the Clonburris SDZ permission. The regional attenuation pond area was designed and sized to accommodate rainfall events exceeding a 1% Annual Exceedance Probability (i.e. a 1-in-100-year storm event), increased by 20% for predicted climate change effects and limit stormwater discharge to the greenfield discharge rate.

The permitted DBFL drawings found in **Appendix A** show in the immediate vicinity of the subject development site, the local storm drainage network shall include storm sewers along the extents of the SLR. Proposed 300mm diameter to 600mm diameter spurs extend from these storm sewers into the subject development site, at various locations along the extent of the SLR.

5.5 Proposed Surface Water Drainage Arrangements

5.5.1 <u>Proposed surface water drainage layout and connection points</u>

As discussed above, the CIL works, proposed under permission (Reg. Ref. SDZ20A/0021) include the SLR, drainage and its associated services. It is intended to discharge at an unrestricted rate to this surface water network from the development site into the proposed 300mm diameter to 600mm diameter spurs, proposed under the SDZ planning permission. From there it shall continue to the regional attenuation ponds and

outfall to the Kilmahuddrick Stream (as described in sub-section 5.4). Integration of the proposed development with this existing infrastructure ensures that stormwater runoff from the development site shall not flow into neighbouring sites but shall instead be collected and subsequently released in a controlled manner after the peak storm duration has passed.

It is proposed to discharge surface water run-off from the proposed development by gravity via new connections to the 300mm diameter to 600mm diameter surface water spurs along the SLR extent. At each connection, the manholes shall be in accordance with SDCC requirements and standard details, and accessible for maintenance purposes.

The proposed stormwater drainage arrangements have been designed in accordance with Part H of the Building Regulations 2010 (Building Drainage), the Greater Dublin Regional Code of Practice for Drainage Works (Version 6), British Standard BS EN 752:2008 (Drains and Sewer Systems Outside Buildings), and the Greater Dublin Strategic Drainage Study (GDSDS).

Please refer to CS Consulting drawing nos. **KSG-CSC-XX-XX-DR-C-0004** for details of the proposed surface water drainage arrangements.

5.5.2 <u>Summary of Compliance with Criteria 1-4 GDSDS</u>

The GDSDS and the Regional Code of Practice for Drainage Works require that a development's stormwater drainage arrangements satisfy four main criteria:

- Criterion 1: River Water Quality Protection satisfied by treatment of run-off within SuDS features, e.g., Permeable paving, detention basins, attenuation tanks etc. and hydrocarbon interceptor.
- Criterion 2: River Regime Protection satisfied by attenuating run-off from the site.
- Criterion 3: Level of Service (flooding) for the site satisfied by the site being outside the 1000-year coastal and fluvial flood extent areas.
- Criterion 4: River Flood Protection attenuation provided within the SuDS features.

In accordance with the requirements of South Dublin County Council, the proposed development shall incorporate Sustainable Drainage Systems (SuDS) features. These serve a dual purpose in managing stormwater within new developments.

5.5.3 Surface Water Network Design

In accordance with South Dublin County Council requirements, the stormwater drainage network is designed to ensure that manholes do not surcharge during a 1-in-2-

year storm event and that the network does not flood during a 1-in-100-year storm event, (including a 20% allowance for predicted climate change impacts) before discharging to the SLR network.

A drainage model was developed using Innovyze MicroDrainage, using the rainfall criteria set out in the SWMP which summarised below:

- The SAAR (Standard Annual Average Rainfall) for the area: 773mm/year
- The sliding duration table for the site indicating the 1:100-year rainwater intensities to be used.

Refer to the stormwater calculations in Appendix C.

5.6 Sustainable Drainage Systems (SuDS) Design

When rain falls on a natural landscape, it soaks into the ground, evaporates, or is taken up by plants, and some of it eventually find its way into streams and rivers. These stages of the water cycle can be impeded when land is altered by development. In urban areas, there tends to be less permeable ground available for infiltration and less vegetation for evapotranspiration. When rain falls on impermeable surfaces, much more of it turns into surface water runoff, which can cause flooding, pollution, and erosion problems. Additionally, urbanisation has a negative impact on wildlife in urban areas.

Sustainable Drainage Systems (SuDS) is a series of management practices and control structures that aim to mimic the natural drainage in developed areas. The philosophy of sustainable drainage systems is about maximising the benefits and minimising the negative impacts of surface water runoff from developed areas.

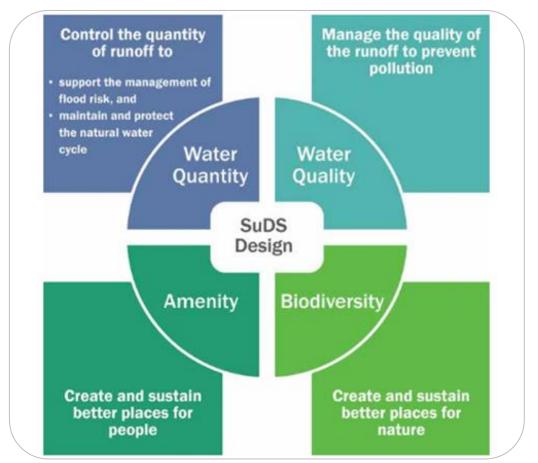


Figure 6 – The four pillars of SuDS design (source: CIRIA C753 – The SuDS Manual)

The SuDS approach involves slowing down and reducing the quantity of surface water runoff from a developed area to manage downstream flood risk and reducing the risk of that runoff causing pollution. This can be achieved by harvesting, infiltrating, slowing, storing, conveying, and treating runoff on site, and where possible, on the surface rather than underground.

By adopting this approach, SuDS have the opportunity to deliver and enhance the green spaces within the developments, supporting the provision of habitats and places for wildlife as well as providing a positive impact for the wellbeing of the communities. As stated in CIRIA C753 (The SuDS Manual), there are four main categories of benefits that can be achieved through the implementation of SUDS: water quantity, water quality, amenity, and biodiversity.

These benefits are aligned with the objectives described in Dublin City Development Plan 2022-2028 and in the Greater Dublin Strategic Drainage Study.

The following section outlines the proposed approach for the management of rainfall runoff from the development to ensure that there is no increase in the risk of flooding for the development or the adjacent areas, whilst the development benefits from improvements in water quality, amenity, and biodiversity.

5.7 SuDS Measures

The proposed development includes SuDS measures in accordance with the requirements of South Dublin City Council and Objective Gl01 of the South Dublin County Council Development Plan 2022-2028, to provide on-site first stage interception of surface water runoff, improving its overall quality prior to ultimate discharge.

Details of the development's proposed SuDS measures are shown on CS Consulting drawing nos. **KSG4-CSC-XX-XX-DR-C-0027**.

5.7.1 <u>Green roofs</u>

Green roofs will be provided on the proposed buildings' flat roof areas. During typical low-intensity rainfall events, these will collect and retain rainwater until it subsequently evaporates. This will reduce the volumes of rainwater discharging to the public sewer network, as well as mitigating peaks in run-off and reducing the potential for contaminants to be washed from the roof, decreasing the development's impact on the receiving environment. Green roofs also have secondary environmental benefits, providing a temperature control effect by absorbing less solar radiation and improving air quality by trapping airborne particulate matter.

Appendix 11 to the South Dublin County Council Development Plan 2022-2028 requires that new developments with flat or gently sloped roof areas of more than 100m² meet the following green roof coverage requirements as a percentage of total roof area:

- 70% extensive green roof coverage, or
- 50% intensive green roof coverage.

As shown in **Table 1**, the proposed development achieves an overall green roof coverage of 3,619m², thereby meeting this development plan requirement.

Table I – Green kool Coverage						
Building	Total Roof Area	Area of Green Roof	Green Roof Coverage			
Block F	1,693m ²	1,185m ²	70%			
Block H	1053m ²	819m ²	78%			
Block J	1,251m ²	938m ²	75%			
Pavillion	801m ²	677m ²	84%			
TOTAL	4,798m ²	3,619m ²	75%			

Table 1 – Green Roof Coverage

5.7.2 <u>Permeable paving</u>

On-street car parking bays are to be finished with a block-constructed permeable paving surface that shall allow rainwater to percolate through the pavement, through layers of grit and coarse aggregate, and into strata below. A perforated filter drain shall collect excess stormwater at the base of the permeable paving system and convey this via overflow connections to the adjacent surface water sewers.

Permeable paving is also to be used for footpaths and other paved areas at podium level on both buildings. Direct infiltration to ground is not possible at these locations but the permeable paving shall provide first stage interception treatment and a degree of stormwater attenuation prior to its discharge to the surface water drainage network.

5.7.3 <u>Tree pits and bio-retention areas</u>

Tree pits and other bio-retention areas are integrated into the landscape design, primarily along the development's street frontages. Surface water runoff from footpaths and road carriageways shall be directed to these SuDS facilities, which allow direct infiltration to ground via layers of engineered topsoil and voided stone.

5.7.4 Rain gardens and planter boxes

Rain gardens and/or planter boxes shall be provided at podium level, at the outlets from downpipes that capture runoff from higher level terraced areas. These shall likewise provide first stage interception treatment and a degree of stormwater attenuation prior to its discharge to the surface water drainage network. The final locations and details of these SuDS facilities shall be determined as part of the development's final landscape design.

5.7.5 <u>Swales</u>

Swales will be integrated throughout the road network to collect rainwater from the internal roadway system. These swales will facilitate infiltration, provide interception treatment, and offer a degree of stormwater attenuation before discharging into the surface water drainage network.

5.8 Stormwater Interception and Treatment

The Greater Dublin Strategic Drainage Study (GDSDS) recommends calculating stormwater interception and treatment volume requirements as follows:

- Interception storage: A minimum of 5mm of rainfall must be captured.
- Treatment storage: If the interception storage requirement is not met, a minimum of 15mm of rainfall must be treated.

The interception volume requirement to be calculated on the basis of 5mm rainfall is shown in **Table 2** gives the resultant required volume for the proposed development.

The development incorporates 6,011m² of permeable paving, which, will intercept the first 15mm of rainfall and provides an interception storage of 90m³. The green roofs cover an area of 3,619m², which, will intercept the first 10mm of rainfall and provides an interception storage of 36m³. The swales cover an area of 2,048m², which, will intercept the first 50mm of rainfall and provides an interception storage of 102m³. The tree pits and bioretention cover an area of 1,442m², which, will intercept the first 100mm of rainfall and provides an interception storage of 144m³. Together, these measures provide a total stormwater storage volume of 372m³, exceeding the required interception volume for the site.

Table 2 – Interception and Treatment Volume Requirements				
Overall Site – Interception & Treatment Provision				
Contributing Area	Interception			
(m2)	Required (m3)	Provided (m3)		
53,537	267	372		

The GDSDS recommends that if the initial runoff from at least 5 mm of rainfall can be intercepted, additional treatment for runoff (treatment volume) is not required. In this development, the stormwater management measures, including permeable paving, green roofs, swales, bioretention and tree pits successfully intercept runoff from at least 5 mm of rainfall. As a result, there is no requirement to provide treatment for 15 mm of runoff, ensuring

compliance with GDSDS guidelines. However, treatment of 15mm has been provided in the Clonburris regional attenuation pond as described in the SWMP.

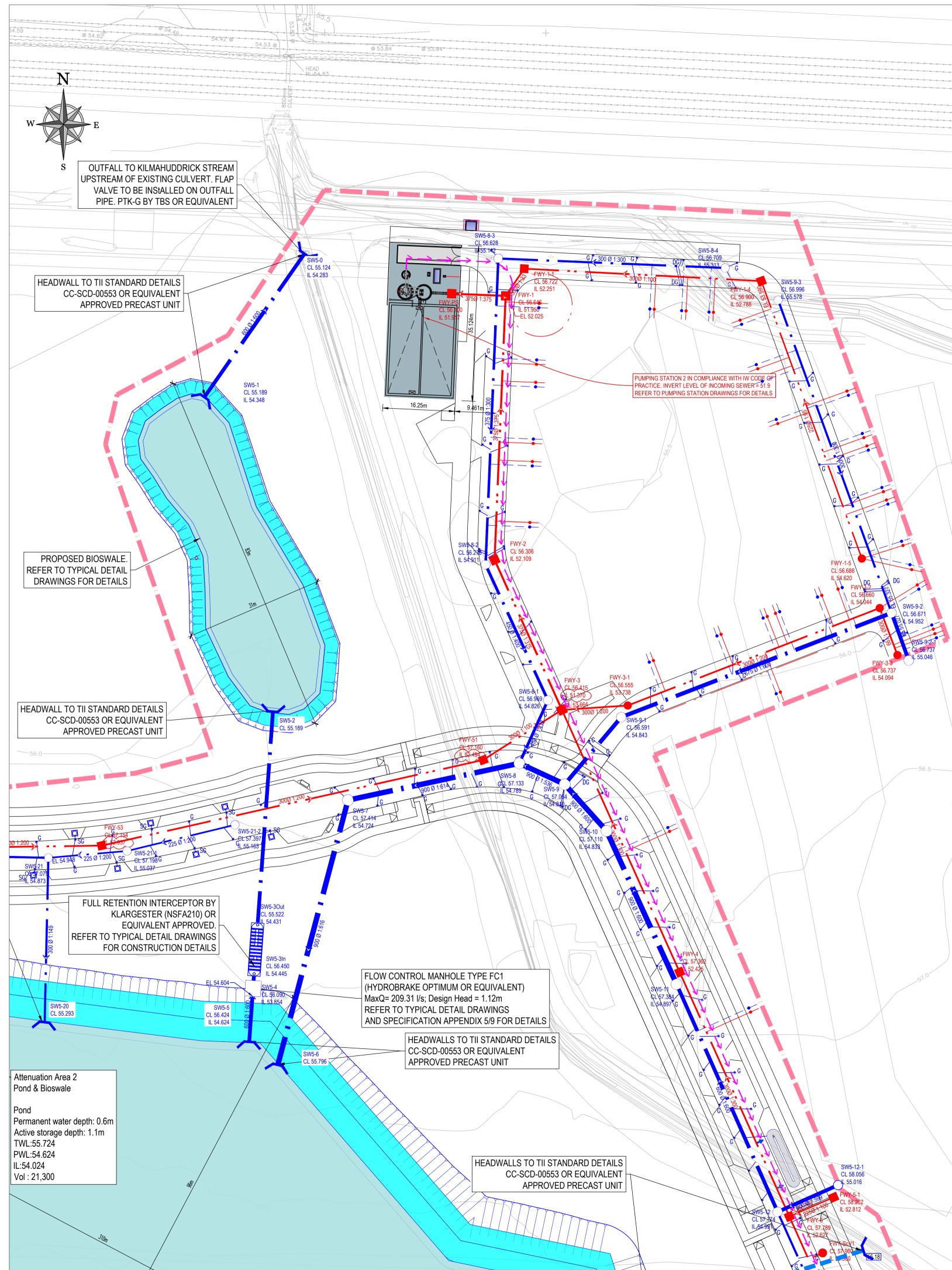
5.9 Works to Existing Ditches

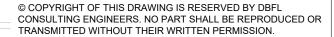
There are currently 3no. existing ditches within the proposed development area. To facilitate the new development, all 3no. ditches need to be diverted. The total length of the ditches to be diverted is approximately 450m. For detailed information on the proposed ditch diversions, refer to CS Consulting drawing nos. **D116-CSC-XX-XX-DR-C-0026**.

Based on the topographical survey, the flow capacity of each existing ditch was determined by assessing the cross-sectional area and invert levels along the channel.

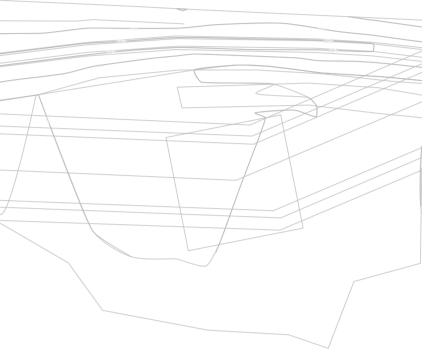
- **Existing Ditch A** has a cross-sectional area of 3.46m² and a longitudinal slope of 1.35%, resulting in a maximum flow velocity of 1.47 m/s and a maximum capacity of **5.37 m³/s**.
- **Existing Ditch B** has a cross-sectional area of 1.98m² and a longitudinal slope of 1.65%, providing a flow velocity of 1.38 m/s and a maximum capacity of **3.13 m³/s**.
- **Existing Ditch C** has a cross-sectional area of 3.43m² with a longitudinal slope of 0.4%, generating a flow velocity of 0.80 m/s and a maximum capacity of **2.74 m³/s**.

Existing Ditches A and B shall be diverted into **Proposed Ditch D**, which will collect the combined ditch flows and run along the western boundary. This ditch shall discharge into the 1500mm diameter stormwater sewer currently under construction as part of the SLR. The ditch flow will ultimately be conveyed to the regional attenuation pond located to the west. **Proposed Ditch D** is designed to accommodate the combined maximum flow from existing Ditches A and B, totalling 8.5 m³/s. It features a cross-sectional area of 2.97m² with a longitudinal slope of 1.49%, allowing for a flow velocity of 3.50 m/s and a maximum capacity of **8.55 m³/s**.


Existing Ditch C will be diverted into the Kilmahuddrick Stream to the east through a 500mm diameter culvert, discharging via a concrete headwall into the stream, subject to approval by South Dublin County Council (SDCC). Where the proposed road network crosses the diverted ditch, the installation of this 500mm diameter culvert is required. The size of this culvert has been determined based on the existing flow capacity and dimensions of the ditch channel. The detailed specification for the watercourse works and culvert sizing will be finalised in consultation with the OPW during the Section 50 application process.



APPENDIX A DRAWINGS

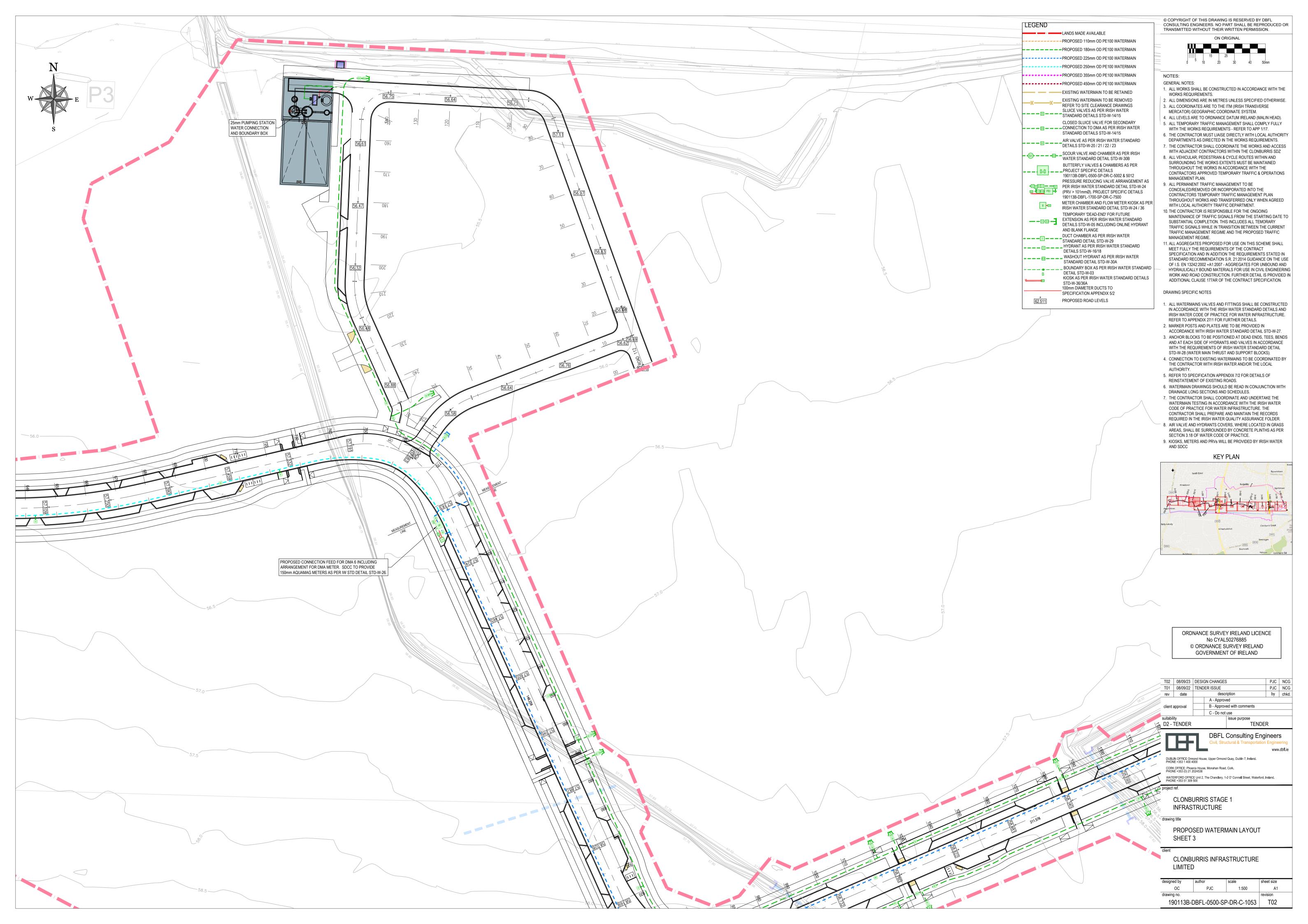


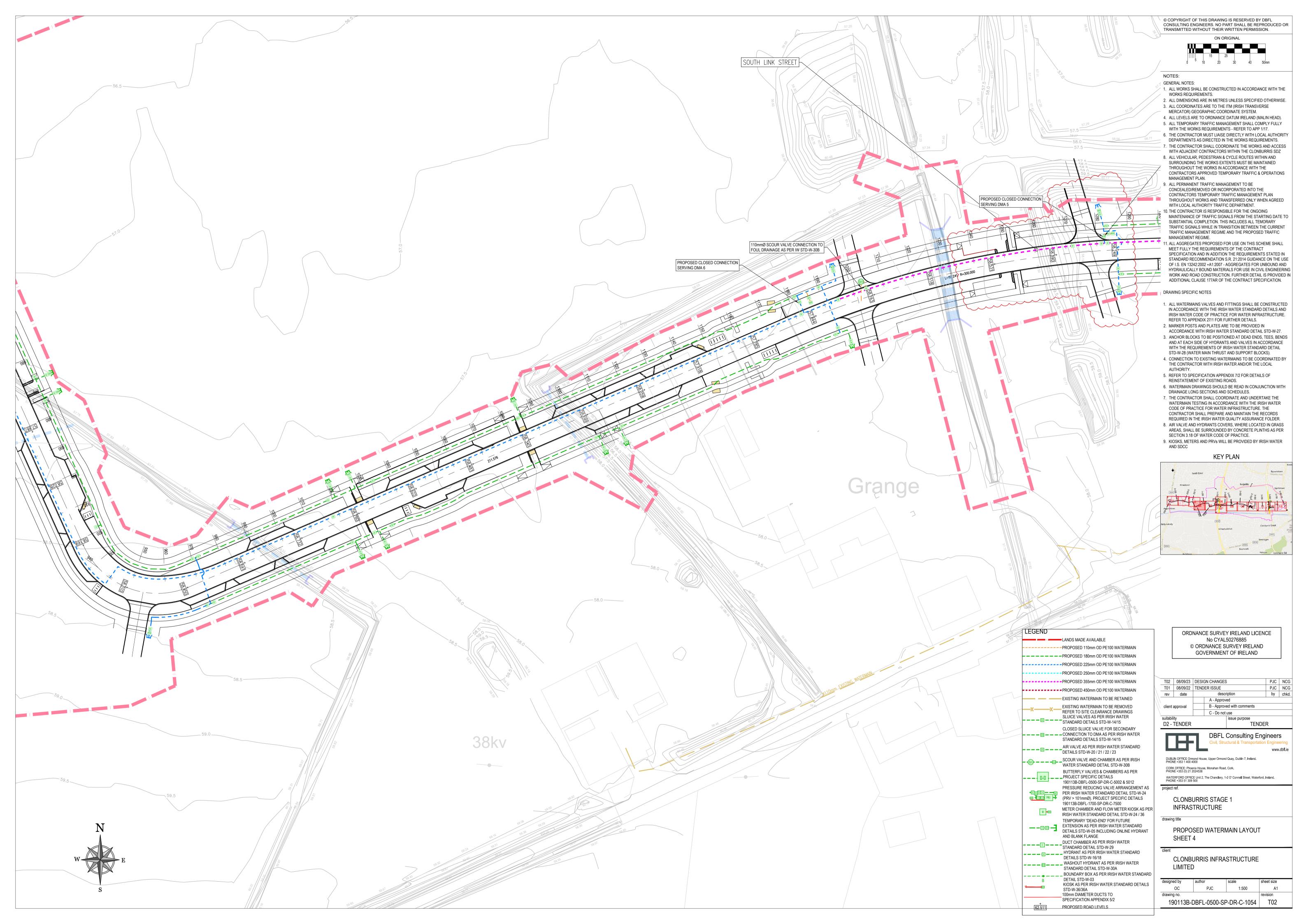
Ø 55.94 State GENERAL NOTES: 1. ALL WORKS SHA CONSTRUCTED IN ACCORDANCE WITH THE
 MODIO DE OLIVERATION A ALL LEVELS ARE TO ORDNANCE DATUM IRELAND (MALIN HEAD). PUMPING STATION 2 IN COMPLIANCE WITH IW CODE OF PRACTICE. INVERT LEVEL OF INCOMING SEWER = 51.9 REFER TO PUMPING STATION DRAWINGS FOR DETAILS EXISTING SERVICES LEGEND COMBINED SEWER ------(CIRCULAR COVER/CHAMBER) FOUL SEWER _____ (CIRCULAR COVER/CHAMBER) FOUL SEWER CL 58 056 - (RECTANGULAR COVER/CHAMBER) SW DRAIN — ()^{MH} - — (CIRCULAR COVER/CHAMBER) ____ - ____ - ____ SW GULLY — — — WATERMAIN GAS GAS MAIN

2. ALL DIMENSIONS ARE IN METRES UNLESS SPECIFIED OTHERWISE. 3. ALL COORDINATES ARE TO THE ITM (IRISH TRANSVERSE

WORKS REQUIREMENTS.

- 5. ALL TEMPORARY TRAFFIC MANAGEMENT SHALL COMPLY FULLY
 - WITH THE WORKS REQUIREMENTS REFER TO APP 1/17. 6. THE CONTRACTOR MUST LIAISE DIRECTLY WITH LOCAL AUTHORITY
 - DEPARTMENTS AS DIRECTED IN THE WORKS REQUIREMENTS. 7. THE CONTRACTOR SHALL COORDINATE THE WORKS AND ACCESS
 - WITH ADJACENT CONTRACTORS WITHIN THE CLONBURRIS SDZ 8. ALL VEHICULAR, PEDESTRIAN & CYCLE ROUTES WITHIN AND SURROUNDING THE WORKS EXTENTS MUST BE MAINTAINED THROUGHOUT THE WORKS IN ACCORDANCE WITH THE CONTRACTORS APPROVED TEMPORARY TRAFFIC & OPERATIONS MANAGEMENT PLAN.
 - 9. ALL PERMANENT TRAFFIC MANAGEMENT TO BE CONCEALED/REMOVED OR INCORPORATED INTO THE CONTRACTORS TEMPORARY TRAFFIC MANAGEMENT PLAN THROUGHOUT WORKS AND TRANSFERRED ONLY WHEN AGREED WITH LOCAL AUTHORITY TRAFFIC DEPARTMENT.
 - 10. THE CONTRACTOR IS RESPONSIBLE FOR THE ONGOING MAINTENANCE OF TRAFFIC SIGNALS FROM THE STARTING DATE TO SUBSTANTIAL COMPLETION. THIS INCLUDES ALL TEMPORARY TRAFFIC SIGNALS WHILE IN TRANSITION BETWEEN THE CURRENT TRAFFIC MANAGEMENT REGIME AND THE PROPOSED TRAFFIC MANAGEMENT REGIME.
 - 11. ALL AGGREGATES PROPOSED FOR USE ON THIS SCHEME SHALL MEET FULLY THE REQUIREMENTS OF THE CONTRACT SPECIFICATION AND IN ADDITION THE REQUIREMENTS STATED IN STANDARD RECOMMENDATION S.R. 21:2014 GUIDANCE ON THE USE OF I.S. EN 13242:2002 +A1:2007 - AGGREGATES FOR UNBOUND AND HYDRAULICALLY BOUND MATERIALS FOR USE IN CIVIL ENGINEERING WORK AND ROAD CONSTRUCTION. FURTHER DETAIL IS PROVIDED IN ADDITIONAL CLAUSE 177AR OF THE CONTRACT SPECIFICATION.
 - DRAWING SPECIFIC NOTES 1. ALL FOUL SEWERS, RISING MAINS, MANHOLES AND CONNECTIONS TO BE CONSTRUCTED IN ACCORDANCE WITH IRISH WATER CODE OF PRACTICE FOR WASTEWATER INFRASTRUCTURE AND IRISH WATER WASTEWATER INFRASTRUCTURE STANDARD DETAILS, REFER TO SPECIFICATION APPENDIX 5/1 FOR FURTHER DETAILS.
 - 2. ALL SURFACE WATER SEWERS, CONNECTIONS, MANHOLES AND GULLIES TO BE CONSTRUCTED IN ACCORDANCE WITH SPECIFICATION APPENDIX 5/1.
 - 3. EXISTING AND PROPOSED DRAINAGE NETWORKS WITHIN LANDS MADE AVAILABLE TO BE JETTED CLEAR FOLLOWING COMPLETION OF DRAINAGE WORKS AND CCTV SURVEY TO BE UNDERTAKEN AND PROVIDED TO THE EMPLOYER'S REPRESENTATIVE. 4. LOCATION AND INVERT LEVELS OF EXISTING MANHOLES OR
 - OUTFALL POINTS, WHERE APPLICABLE TO BE VERIFIED BY CONTRACTOR PRIOR TO COMMENCEMENT OF DRAINAGE WORKS. 5. CONNECTION TO EXISTING DRAINAGE TO BE COORDINATED BY THE
 - CONTRACTOR WITH IRISH WATER AND/OR THE LOCAL AUTHORITY. 6. FUTURE FOUL DRAINAGE EXTENSION PROVISION IS MADE BY MEANS OF PIPES TERMINATING IN "BLIND" MANHOLES, WITHOUT INVERT BENCHING OR INLET CONNECTIONS. TEMPORARY BUNGS SHALL BE INSTALLED IN THE OUTLET PIPE FROM THESE "BLIND" MANHOLES AS PER IRISH WATER CODE OF PRACTICE FOR WASTEWATER INFRASTRUCTURE.
 - 7. REFER TO SPECIFICATION APPENDIX 7/2 FOR DETAILS OF REINSTATEMENT OF EXISTING ROADS.
 - 8. ALL COVERS AND FRAMES TO BE CLASS D400 TO IS EN 124, 100MM MINIMUM FRAME DEPTH. REFER TO SPECIFICATION APPENDIX 5/1 FOR FURTHER DETAILS
 - 9. DRAINAGE DRAWINGS SHOULD BE READ IN CONJUNCTION WITH DRAINAGE LONG SECTIONS AND SCHEDULES.





ORDNANCE SURVEY IRELAND LICENCE No CYAL50276885 © ORDNANCE SURVEY IRELAND GOVERNMENT OF IRELAND

LEGEND							
SW9-8 SW9-9 CL 99.99 CL 99.99	T02	08/09/23	DESIGN CHANGE	2	OC	NCG	
IL 99.99 JIL 99.99 PROPOSED SURFACE WATER SEWE	R AND T01	08/09/22	TENDER ISSUE	5	PJC	NCG	
MANHOLES AS SCHEDULED	rev	date		ription	by	chkd.	
SW5-3In SW5-3Out CL 99.99 CL 99.99	100	uate	A - Approv	•	~)	oniku.	
IL 99.99 IL 99.89	client	client approval B - Approved with comments C - Do not use					
FULL RETENTION OIL SEPARATOR	onorm						
	suitab	ilitv	0 201100	issue purpose			
600mm DIAMETER, 1.0m DEEP SURF	ACE D2 -	D2 - TENDER		TENDE		ER	
	150mm						
SG DIA uPVC SERVICE CONNECTION	- 1 E		DBFL	Consulting E	ulting Engineers		
PROPOSED SUDS TREE PIT,			Civil, Stru	uctural & Transport	ation Engine	ering	
GULLY & 150mmØ LEADER					www	v.dbfl.ie	
G PROPOSED GULLY & 150mmØ							
LEADER	PHC	NE +353 1 400	mond House, Upper Ormon 4000	d Quay, Dublin 7, Ireland.			
(PROPOSED CONVEYANCE SWALE	COF	CORK OFFICE: Phoenix House, Monahan Road, Cork. PHONE +353 (0) 21 2024538					
& 150mmØ LEADER							
	PHC	WATERFORD OFFICE Unit 2, The Chandlery, 1-2 O' Connell Street, Waterford, Ireland. PHONE +353 51 309 500					
PROPOSED CONCRETE DRAINAGE KERB WITH UPSTREAM ACCESS	projec	t ref.					
POINT AND OUTFALL CHAMBER AS							
PER SPECIFICATION APPENDIX 5/5		CLONB	URRIS STAG	E 1			
		INFRAS	STRUCTURE				
PROPOSED DETENTION BASIN / PON	ND						
	drawin	ng title					
PROPOSED UNDERGROUND		PROPC	SED DRAINA	GE LAYOUT			
MODULAR STORAGE		SHEET	4				
FWX-1 FWX-2 CL 99.99 CL 99.99							
IL 99.99 IL 99.99 PROPOSED WASTEWATER SEWER	client						
AND MANHOLE AS SCHEDULED			URRIS INFRA				
WASTEWATER INSPECTION CHAMBE							
DEEP & 100mm DIA SERVICE CONNECTION TO I		DIM LIMITED					
STD-WW-03 & STD-WW-13							
176.2mmID HDPE SDR17 RISING MAIN	Ŭ	ned by	author	scale	sheet size		
	FUR	OC	OC	1:500	A1		
	drawin	ng no.			revision		
\longrightarrow \longrightarrow RISING MAIN BY OTHERS	1	90113B-	DBFL-0500-SI	P-DR-C-1004	T02		

APPENDIX B IRISH WATER CONFIRMATION OF FEASIBILITY

CONFIRMATION OF FEASIBILITY

Owen Sullivan

CS Consulting 1st Floor 19-22 Dame Street Dublin D02E267 **Uisce Éireann** Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Uisce Éireann PO Box 448 South City Delivery Office Cork City

www.water.ie

27 May 2024

Our Ref: CDS24003346 Pre-Connection Enquiry Site 4 Clonburris SDZ, Grange House, Lucan, Dublin

Dear Applicant/Agent,

We have completed the review of the Pre-Connection Enquiry.

Uisce Éireann has reviewed the pre-connection enquiry in relation to a Water & Wastewater connection for a Multi/Mixed Use Development of 432 unit(s) at Site 4 Clonburris SDZ, Grange House, Lucan, Dublin, (the **Development)**.

Based upon the details provided we can advise the following regarding connecting to the networks;

- Water Connection
 Feasible without infrastructure upgrade by
 Uisce Éireann
- The Development is a part of Clonburris Strategic Development Zone. All relevant core water infrastructure within the Zone must be constructed as per the Clonburris SDZ Infrastructure Master Plan and connected to Uisce Éireann network prior the connection. At a connection application stage, the Applicant should provide confirmation from Clonburris Infrastructure Ltd. that connection application is in line with the Master Plan.
- Wastewater Connection -

Feasible without infrastructure upgrade by Uisce Éireann

- The Development is a part of Clonburris Strategic Development Zone. All relevant core wastewater infrastructure within the Zone must be constructed as per the Clonburris SDZ Infrastructure Master Plan and

Stiúrthóirí / Directors: Tony Keohane (Cathaoirleach / Chairman), Niall Gleeson (POF / CEO), Christopher Banks, Fred Barry, Gerard Britchfield, Liz Joyce, Patricia King, Eileen Maher, Cathy Mannion, Michael Walsh.

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin, Ireland D01NP86

Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Uisce Éireann is a design activity company, limited by shares. Cláraithe in Éirinn Uimh.: 530363 / Registered in Ireland No.: 530363.

connected to Uisce Éireann network prior the connection. At a connection application stage, the Applicant should provide confirmation from Clonburris Infrastructure Ltd. that connection application is in line with the Master Plan.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Uisce Éireann infrastructure. Before the Development can be connected to our network(s) you must submit a connection application <u>and be granted and sign</u> a connection agreement with Uisce Éireann.

As the network capacity changes constantly, this review is only valid at the time of its completion. As soon as planning permission has been granted for the Development, a completed connection application should be submitted. The connection application is available at <u>www.water.ie/connections/get-connected/</u>

Where can you find more information?

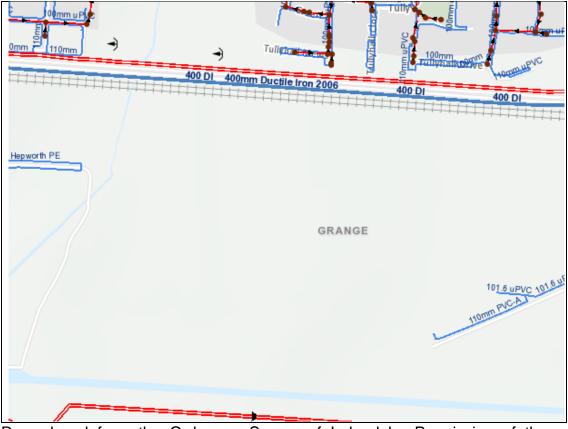
- Section A What is important to know?
- Section B Details of Uisce Éireann's Network(s)

This letter is issued to provide information about the current feasibility of the proposed connection(s) to Uisce Éireann's network(s). This is not a connection offer and capacity in Uisce Éireann's network(s) may only be secured by entering into a connection agreement with Uisce Éireann.

For any further information, visit <u>www.water.ie/connections</u>, email <u>newconnections@water.ie</u> or contact 1800 278 278.

Yours sincerely,

Dermot Phelan Connections Delivery Manager


Section A - What is important to know?

What is important to know?	Why is this important?
Do you need a contract to connect?	 Yes, a contract is required to connect. This letter does not constitute a contract or an offer in whole or in part to provide a connection to Uisce Éireann's network(s).
	 Before the Development can connect to Uisce Éireann's network(s), you must submit a connection application <u>and</u> <u>be granted and sign</u> a connection agreement with Uisce Éireann.
When should I submit a Connection Application?	 A connection application should only be submitted after planning permission has been granted.
Where can I find information on connection charges?	Uisce Éireann connection charges can be found at: <u>https://www.water.ie/connections/information/charges/</u>
Who will carry out the connection work?	 All works to Uisce Éireann's network(s), including works in the public space, must be carried out by Uisce Éireann*.
	*Where a Developer has been granted specific permission and has been issued a connection offer for Self-Lay in the Public Road/Area, they may complete the relevant connection works
Fire flow Requirements	• The Confirmation of Feasibility does not extend to fire flow requirements for the Development. Fire flow requirements are a matter for the Developer to determine.
	What to do? - Contact the relevant Local Fire Authority
Plan for disposal of storm water	The Confirmation of Feasibility does not extend to the management or disposal of storm water or ground waters.
	 What to do? - Contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges.
Where do I find details of Uisce Éireann's network(s)?	 Requests for maps showing Uisce Éireann's network(s) can be submitted to: <u>datarequests@water.ie</u>

What are the design requirements for the connection(s)?	The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this Development shall comply with <i>the Uisce Éireann</i> <i>Connections and Developer Services Standard Details</i> <i>and Codes of Practice,</i> available at <u>www.water.ie/connections</u>
Trade Effluent Licensing	Any person discharging trade effluent** to a sewer, must have a Trade Effluent Licence issued pursuant to section 16 of the Local Government (Water Pollution) Act, 1977 (as amended).
	More information and an application form for a Trade Effluent License can be found at the following link: <u>https://www.water.ie/business/trade-effluent/about/</u> **trade effluent is defined in the Local Government (Water
	Pollution) Act, 1977 (as amended)

Section B – Details of Uisce Éireann's Network(s)

The map included below outlines the current Uisce Éireann infrastructure adjacent the Development: To access Uisce Éireann Maps email datarequests@water.ie

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Note: The information provided on the included maps as to the position of Uisce Éireann's underground network(s) is provided as a general guide only. The information is based on the best available information provided by each Local Authority in Ireland to Uisce Éireann.

Whilst every care has been taken in respect of the information on Uisce Éireann's network(s), Uisce Éireann assumes no responsibility for and gives no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided, nor does it accept any liability whatsoever arising from or out of any errors or omissions. This information should not be solely relied upon in the event of excavations or any other works being carried out in the vicinity of Uisce Éireann's underground network(s). The onus is on the parties carrying out excavations or any other works to ensure the exact location of Uisce Éireann's underground network(s) is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

Owen Sullivan CS Consulting 1st Floor 19-22 Dame Street Dublin D02E267

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

26 March 2025

Uisce Éireann PO Box 448 South City Delivery Office Cork City

Re: Design Submission for Site 4 Clonburris SDZ, Grange House, Lucan, Dublin (the "Development") (the "Design Submission") / Connection Reference No: CDS24003346

Dear Owen Sullivan,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Uisce Éireann has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Uisce Éireann infrastructure. Before you can connect to our network you must sign a connection agreement with Uisce Éireann. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Uisce Éireann's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(<u>https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Uisce Éireann's network(s) (the "**Self-Lay Works**"), as reflected in your Design Submission. Acceptance of the Design Submission by Uisce Éireann does not, in any way, render Uisce Éireann liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Uisce Éireann representative: Name: Alicia Ros Bernal Email: ailciarosbernal.bernal@water.ie

Yours sincerely,

Dermot Phelan Connections Delivery Manager

Stúrthóirí / Directors: Niall Gleeson (POF / CEO), Jerry Grant (Cathaoirleach / Chairperson), Gerard Britchfield, Liz Joyce, Michael Nolan, Patricia King, Eileen Maher, Cathy Mannion, Paul Reid, Michael Walsh.

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin, Ireland D01NP86

Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Uisce Éireann is a designated activity company, limited by shares. Cláraithe in Éirinn Uimh.: 530363 / Registered in Ireland No.: 530363.

Appendix A

Document Title & Revision

- KSG4-CSC-XX-XX-DR-C-0003_Proposed Watermain Layout
- KSG4-CSC-XX-XX-DR-C-0004_Proposed Drainage Layout
- KSG4-CSC-XX-XX-DR-C-0029-0033_Foul Longsections

Additional Comments

The design submission will be subject to further technical review at connection application stage.

Uisce Éireann cannot guarantee that its Network in any location will have the capacity to deliver a particular flow rate and associated residual pressure to meet the requirements of the relevant Fire Authority, see Section 1.17 of Water Code of Practice.

For further information, visit www.water.ie/connections

<u>Notwithstanding any matters listed above, the Customer (including any appointed designers/contractors, etc.) is entirely responsible for the design and construction of the Self-Lay Works.</u> <u>Works.</u> Acceptance of the Design Submission by Uisce Éireann will not, in any way, render Uisce Éireann liable for any elements of the design and/or construction of the Self-Lay Works.

APPENDIX C STORM DRAINAGE CALCULATIONS

Cronin & Sutton Consulting			Page 1
31a Westland Square			
Pearse Street			
Dublin 2			
Date 12/03/2025 17:17	Designed by Ad	elina.Delieva	Drainage
File STORM P03.MDX	Checked by		
Micro Drainage	Network W.12.6		
STORM SEWE		e Modified Ratio ria for Storm	nal Method
Pip	e Sizes STANDARD	Manhole Sizes STANI	DARD
Return Period (y M5-60 Ra Maximum Rainfall (m Foul Sewage (l/ Volumetric Runoff C	ears) 5 (mm) 17.000 tio R 0.277 n/hr) 50 Min H s/ha) 0.00 M beff. 0.750 P (%) 100	Maximum Backd Design Depth for Op in Vel for Auto Des	ate Change (%) 0 rop Height (m) 0.000 rop Height (m) 6.000 timisation (m) 1.300 ign only (m/s) 1.00
	<u>Network Design</u>	Table for Storm	
_	Fall Slope I.Area		k HYD DIA
(m)	(m) (1:X) (ha)	(mins) Flow (l/s)	(mm) SECT (mm)
s1.000 53.194 0	.355 149.8 0.180	5.00 0.0	0.600 0 300
S1.001 71.082 0	.294 241.8 0.186	0.00 0.0	0.600 o 300
S1.002 61.567 0	.269 228.9 0.143	0.00 0.0	0.600 o 300
S1.003 24.963 0	.123 203.0 0.060	0.00 0.0	0.600 o 300
82 000 43 245 0	.300 144.2 0.154	5.00 0.0	0.600 0 300
	.226 200.1 0.142		0.600 0 375
	.066 321.4 0.028		0.600 0 375
	.167 320.7 0.316		0.600 0 450
	.334 148.0 0.196		0.600 0 450
s3.000 50.716 0	.302 167.9 0.171	5.00 0.0	0.600 0 225

\$4.000 23.940 0.188 127.3 0.325 5.00 0.0 0.600 o 225

<u>Network Results Table</u>

S2.00572.4800.213340.30.2680.000.00.6000450S2.00621.2250.043493.60.0780.000.00.6000525

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)	
S1.000	50.00	5.69	56.640	0.180	0.0	0.0	0.0	1.28	90.6	24.4	
S1.001	50.00	6.87	56.285	0.367	0.0	0.0	0.0	1.01	71.2	49.7	
S1.002	50.00	7.86	55.991	0.510	0.0	0.0	0.0	1.04	73.2	69.0	
S1.003	50.00	8.24	55.722	0.570	0.0	0.0	0.0	1.10	77.7	77.2	
S2.000	50.00	5.55	56.975	0.154	0.0	0.0	0.0	1.31	92.4	20.8	
S2.001	50.00	6.14	56.600	0.296	0.0	0.0	0.0	1.28	141.1	40.1	
S2.002	50.00	6.49	56.374	0.324	0.0	0.0	0.0	1.01	111.0	43.9	
S2.003	50.00	7.28	56.233	0.640	0.0	0.0	0.0	1.13	179.7	86.7	
S2.004	50.00	7.78	56.066	0.836	0.0	0.0	0.0	1.67	265.5	113.3	
S3.000	50.00	5.84	56.904	0.171	0.0	0.0	0.0	1.01	40.0	23.2	
S2.005	50.00	8.88	55.732	1.275	0.0	0.0	0.0	1.10	174.4	172.7	
S2.006	49.56	9.23	55.444	1.353	0.0	0.0	0.0	1.00	216.8	181.6	
S4.000	50.00	5.34	56.475	0.325	0.0	0.0	0.0	1.16	46.0	44.1	
			©198	2-2011 M	icro Drain	nage 1	td				
			0100	11	DIUI						

Cronin & Sutton (Consult	cing							Page	2			
31a Westland Squa	are												
Pearse Street									Γ.V	78		200	
Dublin 2											یاک	\bigcirc	\bigcirc
Date 12/03/2025 3	17:17		Des	igned	by Ad	elina.D	Delieva	a			ഹപ്പ	5	
File STORM P03.MI	DX		Cheo	cked l	oy								كالكر
Micro Drainage					.12.6								
			<u>Netw</u>	vork I	Design	Table	for St	<u>corm</u>					
	PN	Length	Fall	Slope	I.Area	T.E.	Base	9	k	HYD	DIA		
		(m)	(m)	(1:X)	(ha)	(mins)	Flow (1	L/s)	(mm)	SECT	(mm)		
	S2.007	31.581	0.073	432.6	0.071	0.00		0.0	0.600	0	525		
	S2.008	5.378	0.012	448.2	0.000	0.00		0.0	0.600	0	600		
	GE 000	36.618	0 017	160 7	0 156	F 00		0 0	0 600		225		
		3.933							0.600		225 225		
	S6.000	49.797	0.296	168.2	0.183	5.00		0.0	0.600	0	300		
	S7 000	17.757	0 179	992	0.082	5.00		0 0	0.600	0	300		
		9.290							0.600		300		
	S7.002	26.962	0.110	245.1	0.100	0.00		0.0	0.600	0	300		
	96 001	26.448	0 223	119 6	0.079	0.00		0 0	0.600	0	300		
		14.493							0.600		300		
		23.288							0.600		375		
		33.374 9.290							0.600		<mark>300</mark> 300		
		36.662							0.600				
	S6.004	69.319	0.173	400.7	0.228	0.00		0.0	0.600	0	450		
	\$9.000	55.531	0.278	199.8	0.240	5.00		0.0	0.600	0	300		
		00.001	0.270	199.0	0.210	0.00		0.0		Ű	000		
	S6.005	36.673	0.075	489.0	0.276	0.00		0.0	0.600	0	525		
				Netw	ork Re	sults '	<u> Table</u>						
PN	Rain	T.C.	US/II	ΣΙ.	Area	Σ Base	Foul	Add	Flow	Vel	Сар	Flow	
	(mm/hr)					.ow (1/s)					(1/s)		
s2.007	48.37	9.72	55.40	1 1	.750	0.0	0.0		0.0	1.07	231.7	229.2	
S2.008	48.19		55.25		.750	0.0					323.4		
S5.000	50.00	5.61	56.70	5 0	.156	0.0	0.0		0.0	1.00	39.9	21.2	

s7.000	50.00	5.19 5	6.450	0.082	0.0	0.0	0.0	1.58	111.6	11.1	
S7.001	50.00	5.34 5	6.271	0.082	0.0	0.0	0.0	1.00	70.8	11.1	
S7.002	50.00	5.79 5	6.233	0.182	0.0	0.0	0.0	1.00	70.7	24.6	
S6.001	50.00	6.10 5	6.059	0.444	0.0	0.0	0.0	1.44	102.0	60.2	
S6.002	50.00	6.24 5	5.836	0.444	0.0	0.0	0.0	1.73	122.6	60.2	
S6.003	50.00	6.57 5	5.585	0.527	0.0	0.0	0.0	1.18	130.0	71.3	
S8.000	50.00	5.50 5	5.875	0.139	0.0	0.0	0.0	1.11	78.4	18.8	
S8.001	50.00	5.64 5	5.708	0.196	0.0	0.0	0.0	1.10	77.9	26.6	
S8.002	50.00	6.19 5	5.662	0.291	0.0	0.0	0.0	1.11	78.3	39.4	
S6.004	50.00	7.71 5	5.329	1.046	0.0	0.0	0.0	1.01	160.5	141.6	
S9.000	50.00	5.83 5	6.400	0.240	0.0	0.0	0.0	1.11	78.4	32.5	
S6.005	50.00	8.32 5	5.081	1.562	0.0	0.0	0.0	1.01	217.8	211.5	

 S6.000
 50.00
 5.69
 56.355
 0.183
 0.0
 0.0
 1.21
 85.5
 24.8

Cronin & Sutton Consulting	g						Page	3		
31a Westland Square										
Pearse Street							$\left\ \sum \right\ $	78		
Dublin 2									کاک	$\underline{0}$
Date 12/03/2025 17:17		Desi	gned	by Ade	lina.D	elieva			ചറി	
File STORM P03.MDX			ked b	-				150	<u> </u>	1 Circle
Micro Drainage				.12.6						
		NCCW	OIK W	• 12 • 0						
		Netw	ork D	esign '	Table	for Storr	<u>n</u>			
PN Lei	ngth	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	
	(m)	(m)	(1:X)	(ha)		Flow (1/s)	(mm)	SECT	(mm)	
S6.006 2	.580 0	0.005	516.0	0.000	0.00	0.0	0.600	0	525	
S10.000 76	.413 0	0.731	104.5	0.302	5.00	0.0	0.600	0	300	
S10.001 6	.079 0	0.039	155.9	0.000	0.00	0.0	0.600	0	300	
S11.000 80	.877 0	0.481	168.1	0.177	5.00	0.0	0.600	0	300	
S11.001 72	.904 0	0.301	242.2	0.165	0.00	0.0	0.600	0	300	
S11.002 6	.474 0	0.027	239.8	0.000	0.00	0.0	0.600	0	300	
S11.003 48					0.00	0.0	0.600	0	375	
S11.004 12					0.00		0.600			
S11.005 68					0.00		0.600			
S11.006 5	.852 0	0.015	390.1	0.000	0.00	0.0	0.600	0	450	
S12.000 24	.065 0	0.243	99.0	0.095	5.00	0.0	0.600	0	225	
S12.001 45	.624 0	0.522	87.4	0.283	0.00	0.0	0.600	0	300	
S12.002 6	.781 0	0.028	242.2	0.000	0.00	0.0	0.600	0	300	
S13.000 26	.917 0	0.160	168.2	0.173	5.00	0.0	0.600	0	225	
S13.001 14	.134 0	0.140	101.0	0.000	0.00	0.0	0.600	0	225	
S13.002 27	.899 0	0.300	93.0	0.200	0.00	0.0	0.600	0	300	
\$13.003 12	.125 0	0.050	242.5	0.000	0.00	0.0	0.600	0	300	
			<u>Netwo</u>	ork Res	ults 1	able				
	r.c.	US/IL	ΣΙ.		E Base	Foul Ad			Cap	
(mm/hr) (m	nins)	(m)	(h	a) Fl	ow (1/s)) (l/s)	(l/s)	(m/s)	(l/s)	(1/s)
\$6.006 50.00	8.36	55.000	5 1	.562	0.0	0.0	0.0	0.98	212.0	211.5

S10.000

S10.001

S11.000

S11.001

S11.002

S11.003

S11.004

S11.005

S11.006

S12.000

S12.001

S12.002

S13.000

S13.001

S13.002

s13.003

50.00

50.00

50.00

50.00

50.00

50.00

50.00

49.09

48.87

50.00

50.00

50.00

50.00

50.00

50.00

50.00

5.83 56.945

5.91 56.214

6.11 57.375

7.32 56.894

7.43 56.593

8.10 56.491

8.28 56.279

9.42 56.147

9.52 55.975

5.31 57.550

5.76 57.232

5.45 58.075

5.63 57.915

5.91 57.700

6.11 57.400

5.87 56.710

0.302

0.302

0.177

0.342

0.342

0.540

0.540

0.926

0.926

0.095

0.378

0.378

0.173

0.173

0.372

0.372

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 1.54 108.7 40.9

0.0 1.26 88.8 40.9

0.01.2185.524.00.01.0171.146.40.01.0171.546.40.01.20132.373.2

0.0 1.20 132.1 73.2

0.0 1.01 160.5 123.1

0.0 1.02 162.7 123.1

0.0 1.31 52.2 12.9 0.0 1.68 118.9 51.1

0.0 1.01 71.1 51.1

0.0 1.01 40.0 23.4 0.0 1.30 51.7 23.4 0.0 1.63 115.3 50.4

0.0 1.01 71.1 50.4

Cronin & Sutton Consulting		Page 4
31a Westland Square		
Pearse Street		
Dublin 2		
Date 12/03/2025 17:17	Designed by Adelina.Delieva	Dentreco
File STORM P03.MDX	Checked by	
Micro Drainage	Network W.12.6	

<u>Manhole Schedules for Storm</u>

MH Name	MH CL (m)	MH Depth	MH Connection	MH Diam.,L*W	PN	Pipe Out Invert	Diameter	PN	Pipes In Invert	Diameter	Backdrop
		(m)		(mm)		Level (m)	(mm)		Level (m)	(mm)	(mm)
S1	58.394	1.754	Open Manhole	1200	S1.000	56.640	300				
S2	58.234	1.949	Open Manhole	1200	S1.001	56.285	300	s1.000	56.285	300	
S3	57.582	1.591	Open Manhole	1200	S1.002	55.991	300	S1.001	55.991	300	
S4	57.299	1.577	Open Manhole	1200	S1.003	55.722	300	S1.002	55.722	300	
S	57.200	1.601	Open Manhole	0		OUTFALL		S1.003	55.599	300	
S5	58.582	1.607	Open Manhole	1200	S2.000	56.975	300				
S6	58.279	1.679	Open Manhole	1350	S2.001	56.600	375	s2.000	56.675	300	
s7	58.288	1.914	Open Manhole	1350	S2.002	56.374	375	S2.001	56.374	375	
S8	58.440	2.207	Open Manhole	1350	S2.003	56.233	450	s2.002	56.308	375	
S9	58.517	2.451	Open Manhole	1350	S2.004	56.066	450	s2.003	56.066	450	
S10	58.429	1.525	Open Manhole	1200	S3.000	56.904	225				
S11	58.314	2.582	Open Manhole	1350	S2.005	55.732	450	s2.004	55.732	450	
								s3.000	56.602	225	645
S12	57.923	2.479	Open Manhole	1500	S2.006	55.444	525	s2.005	55.519	450	
S13	58.050	1.575	Open Manhole	1200	S4.000	56.475	225				
S14	57.812	2.411	Open Manhole	1500	S2.007	55.401	525	S2.006	55.401	525	
								S4.000	56.287	225	586
S15	58.000	2.747	Open Manhole	1500	S2.008	55.253	600	S2.007	55.328	525	
S	58.100	2.859	Open Manhole	0		OUTFALL		S2.008	55.241	600	
S16	58.230	1.525	Open Manhole	1200	S5.000	56.705	225				
S17	58.050	1.562	Open Manhole	1200	S5.001	56.488	225	S5.000	56.488	225	
S	58.250	1.785	Open Manhole	0		OUTFALL		S5.001	56.465	225	
S18	58.310	1.955	Open Manhole	1200	S6.000	56.355	300				
S19	58.133	1.683	Open Manhole	1200	S7.000	56.450	300				
S20	58.158	1.887	Open Manhole	1200	S7.001	56.271	300	S7.000	56.271	300	
S21	58.058	1.825	Open Manhole	1200	S7.002	56.233	300	S7.001	56.233	300	
S22	57.805	1.746	Open Manhole	1200	S6.001	56.059	300	S6.000	56.059	300	
								s7.002	56.123	300	64
S23	57.436	1.600	Open Manhole	1200	S6.002	55.836	300	S6.001	55.836	300	
S24	57.260	1.675	Open Manhole	1350	S6.003	55.585	375	S6.002	55.660	300	
S25	57.622	1.747	Open Manhole	1200	S8.000	55.875	300				
S26	57.680	1.972	Open Manhole	1200	S8.001	55.708	300	S8.000	55.708	300	
S27	57.582	1.920	Open Manhole	1200	S8.002	55.662	300	S8.001	55.662	300	
S28	57.217	1.888	Open Manhole	1350	S6.004	55.329	450	S6.003	55.486	375	82
								S8.002	55.479	300	
S29	57.800	1.400	Open Manhole	1200	S9.000	56.400	300				
S30	57.028	1.947	Open Manhole	1500	S6.005	55.081	525	S6.004	55.156	450	
								S9.000	56.122	300	816
S31	56.850	1.844	Open Manhole	1500	S6.006	55.006	525	S6.005	55.006	525	
S	56.700	1.699	Open Manhole	0		OUTFALL		S6.006	55.001	525	
S32	58.514	1.569	Open Manhole	1200	S10.000	56.945	300				
S33	58.000	1.786	Open Manhole	1200	S10.001	56.214	300	s10.000	56.214	300	
S	58.100	1.925	Open Manhole	0		OUTFALL		s10.001	56.175	300	
S34	58.965	1.590	Open Manhole	1200	S11.000	57.375	300				
S35	58.985	2.091	Open Manhole	1200	S11.001	56.894	300	S11.000	56.894	300	
			1	©1982	-2011 M	licro Dra:	inage Lt	d			

1 ~ 147	00+1	tton (220					Page			
	estlan e Stre		are						70~~~	7	
ubli		el						l l i		5(0)	~~~
	12/03/	2025 1	17:17	Desia	ned by	Adelina.I)elieva				
	STORM			Check		Auciina . L	Jerreva		LG.		C C
	Drain				rk W.12	.6					
	DIGI					• •					
				<u>Manh</u>	ole Sch	edules fo	<u>or Storm</u>				
MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)		Backdro (mm)
S36	59.857	3.264	Open Manhole	1200	S11.002	56.593	300	s11.001	56.593	300	
I			-	l	1			l			I
						licro Dra:					

Cronin & Sutton Consulting		Page 6
31a Westland Square		
Pearse Street		
Dublin 2		
Date 12/03/2025 17:17	Designed by Adelina.Delieva	DETERMINE
File STORM P03.MDX	Checked by	
Micro Drainage	Network W.12.6	

<u>Manhole Schedules for Storm</u>

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
\$37	59.940	3.449	Open Manhole	1350	s11.003	56.491	375	S11.002	56.566	300	
S38	59.555	3.276	Open Manhole	1350	S11.004	56.279	375	s11.003	56.279	375	
S39	59.385	3.238	Open Manhole	1350	s11.005	56.147	450	S11.004	56.222	375	
S40	58.542	2.567	Open Manhole	1350	S11.006	55.975	450	S11.005	55.975	450	
S	58.550	2.590	Open Manhole	0		OUTFALL		S11.006	55.960	450	
S41	58.837	1.287	Open Manhole	1200	S12.000	57.550	225				
S42	58.850	1.618	Open Manhole	1200	S12.001	57.232	300	S12.000	57.307	225	
S43	58.320	1.610	Open Manhole	1200	S12.002	56.710	300	S12.001	56.710	300	
S	58.400	1.718	Open Manhole	0		OUTFALL		S12.002	56.682	300	
S44	59.600	1.525	Open Manhole	1200	S13.000	58.075	225				
S45	59.500	1.585	Open Manhole	1200	S13.001	57.915	225	S13.000	57.915	225	
S46	59.300	1.600	Open Manhole	1200	S13.002	57.700	300	S13.001	57.775	225	
S47	58.950	1.550	Open Manhole	1200	s13.003	57.400	300	S13.002	57.400	300	
S	59.000	1.650	Open Manhole	0		OUTFALL		S13.003	57.350	300	

Cronin & Sutton Consu	ltin	g					1	2age 7
31a Westland Square]	
Pearse Street								
Dublin 2								LIELE
Date 12/03/2025 17:17			Des	ianed k	y Adeli	na.Del	ieva	Dealessor
File STORM P03.MDX				cked by	-			
Micro Drainage				work W.			l	
			NCC	NOIR W.	12.0			
			PIE	PELINE	SCHEDUL	ES for	Storm	
				Ups	tream M	anhole		
PN	Hud	Diam	мн		I.Level	D Depth	МН	MH DIAM., L*W
		(mm) 1		(m)	(m)	(m)	Connecti	
S1.000	0	300	S1	58.394	56.640	1.454	Open Manh	ole 1200
S1.001		300					Open Manh	
S1.002	0	300					Open Manh	
S1.003		300			55.722		Open Manh	
S2.000	0	300	S5	58.582	56.975	1.307	Open Manh	ole 1200
S2.001	0	375	S6	58.279	56.600		Open Manh	
S2.002	0	375	s7	58.288	56.374	1.539	Open Manh	ole 1350
S2.003	0	450	S8	58.440	56.233	1.757	Open Manh	ole 1350
S2.004	0	450	S9	58.517	56.066	2.001	Open Manh	ole 1350
S3.000	0	225	S10	58.429	56.904	1.300	Open Manh	ole 1200
S2.005	0	450	S11	58.314	55.732	2,132	Open Manh	ole 1350
\$2.006	0	525	S12	57.923			Open Manh	
S4.000	0	225	S13	58.050	56.475	1.350	Open Manh	ole 1200
S2.007	0	525	S14	57.812	55.401	1.886	Open Manh	ole 1500
\$2.008	0	600			55.253		Open Manh	
\$5.000	0	225	S16	58.230	56.705	1.300	Open Manh	ole 1200
\$5.001	0	225			56.488		Open Manh	
S6.000	0	300	S18	58.310	56.355	1.655	Open Manh	ole 1200
				<u>Down</u>	stream	Manhole	2	
PN Le	nath	Slope	мн	C.Leve	l I.Level	D.Depti	h MH	MH DIAM., L*W
	(m)	-	Name		(m)	(m)	Connec	,

S1.000	53.194	149.8	S2	58.234	56.285	1.649	Open	Manhole	1200
S1.001	71.082	241.8	s3	57.582	55.991	1.291	Open	Manhole	1200
S1.002	61.567	228.9	S4	57.299	55.722			Manhole	1200
S1.003	24.963	203.0	S	57.200	55.599			Manhole	0
S2.000	43.245	144.2	S6	58.279	56.675	1.304	Open	Manhole	1350
S2.001	45.225	200.1	S7	58.288	56.374	1.539	Open	Manhole	1350
S2.002	21.213	321.4	S8	58.440	56.308	1.757	Open	Manhole	1350
S2.003	53.556	320.7	S9	58.517	56.066	2.001	Open	Manhole	1350
S2.004	49.416	148.0	S11	58.314	55.732	2.132	Open	Manhole	1350
S3.000	50.716	167.9	S11	58.314	56.602	1.487	Open	Manhole	1350
	72.480				55.519		-	Manhole	1500
S2.006	21.225	493.6	S14	57.812	55.401	1.886	Open	Manhole	1500
							_		
S4.000	23.940	127.3	S14	57.812	56.287	1.300	Open	Manhole	1500
00 007	31.581	120 C	S15	58.000	55.328	0 1 4 7	0		1500
	5.378		SID S	58.000	55.241		-	Manhole Manhole	1500
52.008	5.578	440.2	5	58.100	55.241	2.239	open	Mannoie	0
95 000	36.618	169 7	S17	58.050	56.488	1 2 2 7	Onon	Manhole	1200
	3.933		SII	58.250	56.465		-	Manhole	0
33.001	5.955	±/1.0	S	50.250	50.405	1.300	open	Mannole	0
56 000	49.797	168 2	\$22	57.805	56.059	1 446	Onen	Manhole	1200
50.000		100.2	022	57.005	50.000	1.440	open	1.10111016	1200

Cronin & Sutton Consulting		Page 8
31a Westland Square		
Pearse Street		
Dublin 2		
Date 12/03/2025 17:17	Designed by Adelina.Delieva	Dentrece
File STORM P03.MDX	Checked by	
Micro Drainage	Network W.12.6	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	-	Diam (mm)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S7.000 S7.001 S7.002	0 0	<mark>300</mark> 300 300	S19 S20 S21	58.133 58.158 58.058	56.450 56.271 56.233	1.587	Open Manhole Open Manhole Open Manhole	1200 1200 1200
s6.001 s6.002	0	300 300 300	S21 S22 S23	57.805 57.436	56.059 55.836	1.446	Open Manhole Open Manhole	1200 1200 1200
\$6.003 \$8.000 \$8.001	0	375 300 300	S24 S25 S26	57.260 57.622 57.680	55.585 55.875 55.708	1.447	Open Manhole Open Manhole Open Manhole	1350 1200 1200
\$8.002 \$6.004	0	300 450	S27 S28	57.582	55.662	1.620	Open Manhole Open Manhole	1200
S9.000	0	300	S29	57.800	56.400		Open Manhole	1200
\$6.005 \$6.006 \$10.000	0	525 525 300	S30 S31 S32	57.028 56.850 58.514	55.081 55.006 56.945	1.319	Open Manhole Open Manhole Open Manhole	1500 1500 1200
s10.001 s11.000	0	300 300	s33 s34	58.000	56.214	1.486	Open Manhole Open Manhole	1200
S11.001	0	300	S35	58.985	56.894	1.791	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
	17.757		S20	58.158			Open Manhole	1200
	9.290		S21	58.058			Open Manhole	
S7.002	26.962	245.1	S22	57.805	56.123	1.382	Open Manhole	1200
	26.448		S23	57.436			Open Manhole	1200
S6.002	14.493	82.3	S24	57.260	55.660	1.300	Open Manhole	1350
S6.003	23.288	235.2	S28	57.217	55.486	1.356	Open Manhole	1350
S8.000	33.374	199.8	S26	57.680	55.708	1.672	Open Manhole	1200
S8.001	9.290	202.0	S27	57.582	55.662	1.620	Open Manhole	1200
S8.002	36.662	200.3	S28	57.217	55.479	1.438	Open Manhole	1350
S6.004	69.319	400.7	S30	57.028	55.156	1.422	Open Manhole	1500
S9.000	55.531	199.8	S30	57.028	56.122	0.606	Open Manhole	1500
S6.005	36.673	489.0	S31	56.850	55.006	1.319	Open Manhole	1500
	2.580		S	56.700			Open Manhole	0
S10.000	76.413	104.5	S33	58.000	56.214	1.486	Open Manhole	1200
S10.001	6.079	155.9	S	58.100	56.175	1.625	Open Manhole	0
S11.000	80.877	168.1	S35	58.985	56.894	1.791	Open Manhole	1200
S11.001	72.904	242.2	S36	59.857	56.593	2.964	Open Manhole	1200

Cronin & Sutton Consulting		Page 9
31a Westland Square		
Pearse Street		
Dublin 2		
Date 12/03/2025 17:17	Designed by Adelina.Delieva	Denner
File STORM P03.MDX	Checked by	
Micro Drainage	Network W.12.6	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S11.002 S11.003 S11.004 S11.005 S11.006		300 375 375 450 450	S36 S37 S38 S39 S40	59.857 59.940 59.555 59.385 58.542	56.593 56.491 56.279 56.147 55.975	3.074 2.901 2.788	Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole	1200 1350 1350 1350 1350
<pre>\$12.000 \$12.001 \$12.002 \$13.000 \$13.001</pre>	000000000000000000000000000000000000000	225 300 300 225 225	S41 S42 S43 S44 S45	58.837 58.850 58.320 59.600 59.500	57.550 57.232 56.710 58.075 57.915	1.318 1.310 1.300	Open Manhole Open Manhole Open Manhole Open Manhole	1200 1200 1200 1200 1200
\$13.002 \$13.003	0	300 300	S46 S47	59.300 58.950	57.700	1.300	Open Manhole Open Manhole	1200 1200 1200

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S11.002 S11.003 S11.004 S11.005 S11.006	48.165 12.993 68.986	227.9 401.1		59.940 59.555 59.385 58.542 58.550	55.975	2.901 2.788 2.117	Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole	1350 1350 1350 1350 0
S12.000 S12.001 S12.002	45.624		S42 S43 S		57.307 56.710 56.682	1.310	Open Manhole Open Manhole Open Manhole	1200 1200 0
\$13.000 \$13.001 \$13.002 \$13.003	14.134 27.899	101.0 93.0	S45 S46 S47 S	58.950	57.915 57.775 57.400 57.350	1.300 1.250	Open Manhole Open Manhole Open Manhole Open Manhole	1200 1200 1200 0

Cronin & Sutton Consul	ting						Page 10
31a Westland Square							
Pearse Street							
Dublin 2							
Date 12/03/2025 17:17		De	signe	d by	Adelina.	Delieva	
File STORM P03.MDX		Ch	ecked	by			
Micro Drainage		Ne	twork	W.1	2.6		
			Area	a Sur	<u>mmary for</u>	Storm	
	Pipe				Gross	Imp.	Pipe Total
	Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
	1.000	User	_	100	0.180	0.180	0.180
	1.001				0.186	0.186	0.186
	1.002			100	0.143	0.143	0.143
	1.003	User	-	100	0.060	0.060	0.060
	2.000				0.154	0.154	0.154
	2.001				0.142	0.142	0.142
	2.002				0.028 0.316	0.028 0.316	0.028 0.316
	2.003				0.196	0.196	0.196
	3.000			100	0.171	0.171	0.171
	2.005	User	-	100	0.268	0.268	0.268
	2.006			100	0.078	0.078	0.078
	4.000			100	0.325	0.325	0.325
	2.007	User -		100 100	0.071 0.000	0.071 0.000	0.071 0.000
	2.008				0.000	0.000	0.156
	5.000	- 0361		100	0.000	0.000	0.000
	6.000	User		100	0.183	0.183	0.183
	7.000	User	-	100	0.082	0.082	0.082
	7.001	-		100	0.000	0.000	0.000
	7.002				0.100	0.100	0.100
	6.001 6.002	User -		100 100	0.079 0.000	0.079 0.000	0.079 0.000
	6.003				0.082	0.082	0.082
	8.000			100	0.139	0.139	0.139
	8.001	User	-	100	0.058	0.058	0.058
	8.002			100	0.095	0.095	0.095
	6.004			100	0.228	0.228	
	9.000				0.240	0.240	
	6.005 6.006			100 100	0.276	0.276 0.000	0.276 0.000
	10.000				0.302	0.302	0.302
	10.001				0.000	0.000	0.000
	11.000	User	-	100	0.177	0.177	0.177
	11.001				0.165	0.165	0.165
	11.002				0.000	0.000	0.000
	11.003 11.004				0.198	0.198	0.198
	11.004			100 100	0.000 0.385	0.000 0.385	0.000 0.385
	11.005				0.000	0.000	0.000
	12.000			100	0.095	0.095	0.095
	12.001				0.283	0.283	0.283
	12.002				0.000	0.000	0.000
	13.000			100	0.173	0.173	0.173
	13.001 13.002			100 100	0.000 0.200	0.000 0.200	0.000 0.200
	13.002				0.200	0.200	0.200
					Total	Total	Total
					6.016	6.016	6.016
	St	ircha	arged	Out	fall Deta	ils for S	<u>Storm</u>
				-	• -		
	Outfall				Level I. Le		•
1	Pipe Numk	per	Name	(1	m) (m)) I.Lev (m)	el (mm) (mm)
	01 (102	0		200 55		00 0 0
	S1.(103	S	57	.200 55.	599 55.6	00 0 0
		D	atum (m) 54	1.624 Offse	t (mins) (
		1	982-2	011	Micro Dra	ainage Lt	d

Cronin	& Sut	ton Co	onsult	ing						P	age 11				
31a We	stland	l Squar	re									0			
Pearse	Stree	et									$\sum_{i=1}^{n}$	K C C	7		1
Dublin	2												يره		
Date 1	2/03/2	2025 17	7:17		Desi	gned 1	by Ade	lina.I	Deliev	a	ᡗ᠐	Der	۲ <u> </u>	-	
File S'	TORM F	03.MD	х		Chec	ked b	У					ا گ		تك	
Micro i	Draina	ige			Netv	vork W	.12.6								
				<u>Sı</u>	ırchar	ged Oi	utfall	Detai	ls fo	r Stor	<u>rm</u>				
Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	-	Time (mins)	Depth (m)	Time (mins)	Depth (m)
	0.150 0.300	-	0.450 0.600		0.750 0.900		1.050 1.100		1.050 0.900		0.750 0.600		0.450 0.300	15	0.150
				<u>Sı</u>	ırchar	ged Oi	ıtfall	Detai	ls fo	r Stor	<u>rm</u>				
			Pi	Outfall pe Numk		fall C. ame	. Level (m)	I. Lev (m)	I.		D,LW (mm) (mm				
				S2.0	800	S	58.100	55.2	41 5	5.000	0	0			
					Dat	um (m)	54.624	Offset	. (mins) 0					
Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)
	0.150 0.300	-	0.450 0.600		0.750 0.900		1.050 1.100		1.050 0.900		0.750 0.600		0.450 0.300	15	0.150
				Sı	ırchar	ged Oi	utfall	Detai	ls fo	<u>r Stor</u>	<u>.m</u>				
			Pi	Outfall pe Numk		fall C. ame	. Level (m)	I. Lev (m)	I.		D,LW (mm) (mr				
				S5.0	001	S	58.250	56.4	65 5	6.060	0	0			
					Dat	um (m)	54.624	Offset	(mins) 0					
Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)
	0.150 0.300		0.450 0.600		0.750 0.900		1.050 1.100		1.050 0.900		0.750 0.600		0.450 0.300	15	0.150
				<u>S1</u>	ırchar	ged Oi	utfall	Detai	<u>ls fo</u>	r Stor	<u>rm</u>				
			Pi	Outfall pe Numk		fall C. ame	. Level (m)	I. Lev (m)	I.	lin Level (m)	D,LW (mm) (mr				
				S6.0	06	S	56.700	55.0	01 5	5.010	0	0			
					Dat	um (m)	54.624	Offset	(mins) 0					
Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	-	Time (mins)	Depth (m)	Time (mins)	-	Time (mins)	Depth (m)	Time (mins)	Depth (m)
	0.150		0.450		0.750		1.050		1.050		0.750 0.600		0.450	15	0.150
2	0.300	4	0.000	ю	0.900	8	1.100	τU	0.900	12	0.000	14	0.300	I	

Cronin	& Sut	ton Co	onsult	ing						P	age 12)			
31a Wes	stland	l Squar	re									~			
Pearse	Stree	et										<u>К</u> С	70)	(🛌
Dublin													ے ک	/	
Date 12	2/03/2	2025 1	7:17		Desi	igned	by Ade	lina.D	Deliev	a) D)_	Ser	150		79
File ST			X			cked b								<u>سل</u> ک	
Micro I	Draina	ıge			Netv	work W	.12.6								
				<u>Su</u>	rchar	ged Oi	utfall	Detai	<u>ls fo</u>	<u>r Stor</u>	<u>°m</u>				
			Pi	Outfall pe Numb			. Level (m)	I. Lev (m)	I. 3	Level (D,LW (mm) (mm				
				S10.0	01	S	58.100	56.1		(m) 6.100	0	0			
					Dat	:um (m)	54.624	Offset	(mins) 0					
Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)
1	0.150	3	0.450	5	0.750	7	1.050	0	1.050	11	0.750	13	0.450	15	0.150
	0.300		0.430		0.900		1.100		0.900		0.600		0.450		0.150
				<u>Su</u>	rchar	ged O	utfall	Detai	ls fo	<u>r Stor</u>	<u>m</u>				
			Pi	Outfall pe Numb			. Level (m)	I. Lev (m)	I. 3		D,LW (mm) (mm				
				S11.0	06	S	58.550	55.9	60 5	5.650	0	0			
					Dat	:um (m)	54.624	Offset	(mins)) 0					
Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depti (m)
	0.150 0.300		0.450 0.600		0.750 0.900		1.050 1.100		1.050 0.900		0.750 0.600		0.450 0.300		0.150
				<u>Su</u>	rchar	ged O	utfall	Detai	ls fo	r Stor	<u>`m</u>				
			Pi	Outfall pe Numb		fall C ame	. Level (m)	I. Lev (m)	I. 3	Level (D,L.W (mm) (mm				
				S12.0	02	S	58.400	56.6		(m) 6.000	0	0			
					Dat	um (m)	54.624	Offset	(mins) 0					
Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	-	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depti (m)
	0.150		0.450		0.750		1.050		1.050		0.750		0.450	15	0.150
2	0.300	4	0.600		0.900 <u>rchar</u>		1.100 utfall	10 Detai	0.900 ls fo		0.600 <u>m</u>	⊥4	0.300	I	
						-									
			Pi	Outfall pe Numb			. Level (m)	I. Lev (m)	I. 3		D,LW (mm) (mm				
				S13.0	03	S	59.000	57.3	50 5	5.750	0	0			
					Dat	um (m)	54.624	Offset	(mins) 0					
					©19	82-201	1 Micı	o Drai	inage	Ltd					

Cronin	& Sut	ton Co	onsult	ing						P	age 13	3			
31a Wes	stland	l Squar	ce												
Pearse	Stree	et									$\sum_{i=1}^{i}$	6	200	\mathcal{A}	1
Dublin	2											15	50)	\bigcirc
Date 12	2/03/2	2025 17	7:17		Desi	gned 3	by Ade	lina.I	Deliev	7a		ວຣາດ		2	
File S	form e	203.MD	ζ		Chec	ked b	У					<u>د</u>		<u>تحک</u>	کر
Micro I	Draina	age			Netw	vork W	.12.6								
				<u>Sı</u>	ırchar	ged Oi	utfall	Detai	ls fo	r Stor	<u>m</u>				
Time (mins)	Depth (m)		Depth (m)	Time (mins)	_	Time (mins)		Time (mins)		Time (mins)		Time (mins)		Time (mins)	Depth (m)
1	0.150	3	0.450	5	0.750	7	1.050	9	1.050	11	0.750	13	0.450	15	0.150
2	0.300	4	0.600	6	0.900	8	1.100	10	0.900	12	0.600	14	0.300		
		Foul c of Inp	Area Ho Headl Sewage	l Reduc Hot S t Start oss Coe per he rograph	tion Fa tart (r Level eff (Glo ctare	actor 1 nins) (mm) obal) 0 (1/s) 0 Number	.000 0 F .500 .000	MA low per line Con	DD Fact Persor Ou ntrols	n per Da)m ³ /ha Coeff ay (l/p an Time aterval er of T	Storage iecient er/day) (mins) (mins) ime/Are	2.000 0.800 0.000 60 1 a Diagn		
							<u>ic Rai</u>	nfall	<u>Detai</u>						
		R	-	Rainfal: Period				FSR 5				Summe: 0.750			
		1	CCULII I				nd and	-				0.840			

31 d Weylland Square Program (Provided by Adeling. Delieve 12/03/2025 17:17) Parage Struct Tublin 2. Date 12/03/2025 17:17) Lie S7264 P33.MX Chevek W.12.6 Summary of Critical Results by Maximum Level (Each 1) for Storm Margin for Flood Hisk Warning (m) S00.0 Margin for Storm Terfile() S00.0 Provide() (r) (r) S00.0 Provide() (r) (r) (r) (r) (r) (r) (r) (r) (r) (Cronin & Sutton Consul	ting				Page 14
Subility 3 Devigned by Advinue.Delieve Date 12/03/2025 17:17 Devigned by Advinue.Delieve Devigned by Advinue.Delieve Micro Drainage Network w.12.6 Micro Drainage Noneor and Wirter Topfilg(2) Summer and Wirter Drastizzele (1000 12 Micro Drainage Sumhary Drast 20/12 Micro Drainage Micro Drainage 150, 210, 220, 210, 220, 210, 200, 200, 20	31a Westland Square					
Dete 12/03/2023 17:17 Designed by Adelinu. Delieva Decine (1) Micro Drainage Retwork 9.12.6 Decine (2) Decine (2) Micro Drainage Retwork 9.12.6 Decine (2) Source (2) Margin for Flood Risk Warning (mm) 500.0 Source (2) Source (2) Margin for Flood Risk Warning (mm) 500.0 Source (2) Source (2) Margin for Flood Risk Warning (mm) 500.0 Source (2) Source (2) Margin for Flood Risk Warning (mm) 500.0 Source (2) Source (2) Margin for Flood Risk Warning (mm) 500.0 Source (2) Source (2) Margin for Flood Risk Warning (mm) 500.0 Source (2) Source (2) Margin for Flood Risk Warning (mm) 500.0 Source (2) Source (2) Source (2) Return Beriod (2) Namer Source (2) Source (2) Source (2) Source (2) Source Pariage Source (2) Source (2) Source (2) Source (2) Source (2) Source Pariage Source (2) Source (2) Source (2) Source (2) Source (2)<	Pearse Street					
File STORM F03.MOX Checked by Wicro Drainage Network W.12.6 Summary of Critical Results by Maximum Level (Kank 1) for Storm Maryin for Flood Risk Warning (ms) 300.0 Analysis Timestep 2.5 Decond Increment (Batended) 100.0 Profile(s) Summer and Minter Ducations 000 Testile Status 000 Decations() Minis 10, 30, 80, 120, 180, 240, 360, 460, 600, 720, 960, 1400, 2100, 230, 350, 720, 860, 1200 Decations() Minis 10, 20, 200, 4320, 5760, 720, 860, 1200 Decations() Minis 10, 200, 120, 120, 200, 360, 120, 300, 720, 860, 1200 Return Classe First Y First S (Mine 100, 120, 120, 120, 200, 360, 1200 Mine 100 -220 120/15 Bummer 31.001 S Winker 100 -220 120/15 Bummer 31.001 S Winker 100 -220 120/15 Bummer 31.001 S Winker 100 -220 120/15 Bummer 31.001 S Winker 100 -220 120/15 Bummer 31.001 S Winker 100 -220 120/15 Bummer 31.001 S Winker 100 -220 120/15 Bummer 31.001 S Winker 100 -220 120/15 Bummer 32.004 S Winker 100 -220 120/15 Bummer	Dublin 2					
Micro Drainage Network W.12.6 Eunmary of Critical Results by Maximum Level (Rank 1) for Storm Margin for Flood Risk Marning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) 00 DIG Statum 00 Strafflar(s) 00 Dig Statum 00 Strafflar(s) 00 Strafflar(s) 00 Derasflar(s) 00 Strafflar(s) 00 Strafflar(s) 00 Derasflar(s) 00 Statum 00 Statum 00 Derasflar(s) 15, 10, 60, 170, 180, 240, 360, 600, 720, 560, 10030 Return Climate First X First X First Y First 2 O/F Lvl PM Stomm Period Change Surcharge S1.0001 15 Xinter 100 420 100/15 Summer S2.0001 15 Xinter 100 420 100/15 Summer	Date 12/03/2025 17:17		Desig	gned by	Adelina.Del	
Summary of Critical Results by Maximum Level (Rank 1) for Storm Maryin for Flood Risk Warning (mm) 200.0 Analysis Timestery 2.5 Second Increment (Extensed) DVN Storms DVN Storms ON Dvn Storm Dvn Storm Pair (Dvn Storm) Dvn Storm Pair (Dvn Storm) Dvn Storm Pair (Dvn Storm) Dvn Storm Pair (Dvn Storm) Dvn Storm Pair (Dvn Storm) Dvn Storm Pair (Dvn Storm) Dvn Storm Pair (Dvn Storm) Dvn Storm Pair (Dvn Storm) Dvn Storm Pair (Dvn Storm) Dvn Storm Pair (Dvn Storm) Dvn Storm Pair (Dvn Storm) Dvn Storm Pair (Dvn Storm) Dvn Storm Pair (Dvn Storm) Dvn Storm Pair (Dvn Storm) Dvn Storm Pair (Dvn Storm)	File STORM P03.MDX		Checl	ked by		
Margin for Flord Risk Maring (m) 300.0 Maiysis Timestep 2.5 Second Increment (Extended) DCS Status 00 DVD Status 00 Incritis Status 00 Duration (s) (man) 13, 30, 6D, 120, 180, 240, 580, 480, 600, 720, 980, 1440, 2160, 2880, 4320, 5760, 7200, 5860, 100060 Return Deriod(s) (years) 100 Climate Charge (s) 20 No Storm Period(s) (years) Climate Status 100 Storm Period(s) (years) 20 Storm Period(s) (years) 20 Storm Period(s) (years) 200 / 720, 100	Micro Drainage		Netwo	ork W.1	2.6	
Margin for Flord Risk Maring (m) 300.0 Maiysis Timestep 2.5 Second Increment (Extended) DCS Status 00 DVD Status 00 Incritis Status 00 Duration (s) (man) 13, 30, 6D, 120, 180, 240, 580, 480, 600, 720, 980, 1440, 2160, 2880, 4320, 5760, 7200, 5860, 100060 Return Deriod(s) (years) 100 Climate Charge (s) 20 No Storm Period(s) (years) Climate Status 100 Storm Period(s) (years) 20 Storm Period(s) (years) 20 Storm Period(s) (years) 200 / 720, 100						
Analysis "imstep 2.5 Second Increment (Extended) DYS Status OK DYD Status OK DYD Status OK Duration(s) (mins) 15, 10, 00, 120, 180, 240, 330, 440, 600, 720, 580, 10080 Duration(s) (mins) 15, 10, 00, 120, 180, 240, 330, 440, 600, 720, 580, 10080 Return Period(s) (genrs) 1440, 2160, 280, 4320, 570, 7200, 2804, 10080 Climate Change (%) 20 N Stoam Period Change Stoam Period Change Surmer Stoam First X First X / F	Summary	of Criti	ical R	esults	by Maximum 1	Level (Rank 1) for Storm
Analysis "imstep 2.5 Second Increment (Extended) DYS Status OK DYD Status OK DYD Status OK Duration(s) (mins) 15, 10, 00, 120, 180, 240, 330, 440, 600, 720, 580, 10080 Duration(s) (mins) 15, 10, 00, 120, 180, 240, 330, 440, 600, 720, 580, 10080 Return Period(s) (genrs) 1440, 2160, 280, 4320, 570, 7200, 2804, 10080 Climate Change (%) 20 N Stoam Period Change Stoam Period Change Surmer Stoam First X First X / F						
Analysis "imstep 2.5 Second Increment (Extended) DYS Status OK DYD Status OK DYD Status OK Duration(s) (mins) 15, 10, 00, 120, 180, 240, 330, 440, 600, 720, 580, 10080 Duration(s) (mins) 15, 10, 00, 120, 180, 240, 330, 440, 600, 720, 580, 10080 Return Period(s) (genrs) 1440, 2160, 280, 4320, 570, 7200, 2804, 10080 Climate Change (%) 20 N Stoam Period Change Stoam Period Change Surmer Stoam First X First X / F						
DTS Status ON DUD Status ON DUD Status ON Thertis Status ON Duration(s) (nins) 15, 30, 50, 120, 180, 240, 360, 450, 600, 720, 960, 184, 1000 Return Period(s) (wars) 100 Clinate Change (S) 200 Status 100 Clinate Change (S) 200 Status 100 Status 100/15 Summer <td>Margin</td> <td>n for Flo</td> <td></td> <td>-</td> <td></td> <td></td>	Margin	n for Flo		-		
Inertia Status ON Frofile(s) Duration(s) (mins) 5, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1240, 2160, 2380, 4320, 5700, 7200, 8640, 10080 Return Period(s) (vers) Climate Change (vers) 100 Return Climate Change Surbarge First X First Y First S O/F Ivit Return Climate 100 +200, 100/15 Summer 81.000 15 Winter 100 +200, 100/15 Summer 82.001 15 Winter 100 +200, 100/15 Summer 82.003 15 Winter 100 +200, 100/15 Summer 82.004 15 Winter 100 +200, 100/15 Summer 82.005 15 Winter 100 +200, 100/15 Summer 82.006 15 Winter 100 +200, 100/15 Summer 82.007 15 Winter 100 +200, 100/15 Summer 82.008 15 Winter 100 +200, 100/15 Summer 82.007 15 Winter 100 +200, 100/			11101	-	-	
Profile(s) Summer and Minter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5700, 7200, 8640, 10080 Return Period(s) (years) 103 Clinate Charge (s) 203 PN Stom Period Charge Surcharge First Y First Y First Z O// S S1.000 15 Minter 100 +288 100/15 Nummer Slower Flood Overflow Act. Exc. S1.001 15 Minter 100 +288 100/15 Nummer Slower Slower Slower S2.000 15 Winter 100 +288 100/15 Nummer Slower Slower Slower S2.001 15 Winter 100 +288 100/15 Nummer Slower Slower Slower S2.001 15 Winter 100 +288 100/15 Summer Slower Slower Slower S2.001 15 Winter 100 +288 100/15 Summer Slower Slower Slower S2.001 15 Winter 100 +288 100/15 Summer Slower Slower Slower S2.001 15 Winter 100 +288 100/15 Summer Slower Slower				DVD S	Status	ON
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, Return Period(s) (years) Climate Change (s) 20			I	inertia S	status	ON
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, Return Period(s) (years) Climate Change (s) 20						
1440, 2160, 2880, 4320, 5760, 7200, 8840, 10080 Return Period(s) (years) 20 N Storm Period Change First Y First Y First Z 0/F Lvl N Storm Period Change First Y First Y First Z 0/F Lvl S1.000 15 Winter 100 +208 100/15 Summer First Y First Y First Z 0/F Lvl S1.001 15 Winter 100 +208 100/15 Summer First Y Fi						
Return Period (a) (years) 100 Climate Change (b) 20 N Storm Period Change First X First Y First Z O/F Lal S1.000 15 Winter 100 +208 100/15 Summer First Y	Durati	.on(s) (m	ins)			
Clinate Change (8) Return Clinate Return C	Return Peric	d(s) (ve:	ars)	144(υ, ΖΙΌΟ, ΖΫΫΟ,	
PN Stom Period Change Surcharge Flood Overflow Act. Exc. S1.000 15 Winner 100 +203 100/15 Summer S1.001 15 Winner 100 +203 100/15 Summer S1.001 15 Winner 100 +203 100/15 Summer S2.001 15 Winner 100 +203 100/15 Summer S2.001 15 Winner 100 +203 100/15 Summer S2.002 15 Winner 100 +203 100/15 Summer S2.003 15 Winner 100 +203 100/15 Summer S2.003 15 Winner 100 +203 100/15 Summer S2.001 15 Winner 100 +203 100/15 Summer S2.002 15 Winner 100 +203 100/15 Summer S2.003 15 Winner 100 +203 100/15 Summer S2.007 15 Winner 100 +203 100/15 Summer S2.007 15 Winner 100 +203 100/15		-				
PN Stom Period Change Surcharge Flood Overflow Act. Exc. S1.000 15 Winner 100 +203 100/15 Summer S1.001 15 Winner 100 +203 100/15 Summer S1.001 15 Winner 100 +203 100/15 Summer S2.001 15 Winner 100 +203 100/15 Summer S2.001 15 Winner 100 +203 100/15 Summer S2.002 15 Winner 100 +203 100/15 Summer S2.003 15 Winner 100 +203 100/15 Summer S2.003 15 Winner 100 +203 100/15 Summer S2.001 15 Winner 100 +203 100/15 Summer S2.002 15 Winner 100 +203 100/15 Summer S2.003 15 Winner 100 +203 100/15 Summer S2.007 15 Winner 100 +203 100/15 Summer S2.007 15 Winner 100 +203 100/15			Pot-	Climete	Dinat V	First V First 7 O/F I1
S1.000 15 Winter 100 +208 100/15 Summer S1.001 15 Winter 100 +208 100/15 Summer S1.001 15 Winter 100 +208 100/15 Summer S2.001 15 Winter 100 +208 100/15 Summer S2.001 15 Winter 100 +208 100/15 Summer S2.002 15 Winter 100 +208 100/15 Summer S2.003 15 Winter 100 +208 100/15 Summer S2.001 15 Winter 100 +208	PN	Storm				
31.001 15 Winter 100 +208 100/15 Summer 31.003 15 Winter 100 +208 100/15 Summer 32.000 15 Winter 100 +208 100/15 Summer 32.001 15 Winter 100 +208 100/15 Summer 32.002 15 Winter 100 +208 100/15 Summer 32.002 15 Winter 100 +208 100/15 Summer 32.001 15 Winter 100 +208 100/15 Summer 33.000 15 Winter 100 +208 100/15 Summer 32.006 15 Winter 100 +208 100/15 Summer 32.006 15 Winter 100 +208 100/15 Summer 32.007 15 Winter 100 +208 100/15 Summer 35.000 15 Winter 100 +208 100/15 Summer 35.000 15 Winter 100 +208 100/15 Summer 36.000 15 Winter 100 +208 100/15 Summer 36.001 15 Winter 100 +208 100/15 Summer 36.001 15 Winter 100 +208 100/15 Summer 36.001 15 Winter 100 +208 100/15 Summer					3-	
S1.002 15 Winter 100 +208 100/15 Summer S2.000 15 Winter 100 +208 100/15 Summer S2.001 15 Winter 100 +208 100/15 Summer S2.002 15 Winter 100 +208 100/15 Summer S2.003 15 Winter 100 +208 100/15 Summer S2.003 15 Winter 100 +208 100/15 Summer S2.003 15 Winter 100 +208 100/15 Summer S3.000 15 Winter 100 +208 100/15 Summer S2.006 15 Winter 100 +208 100/15 Summer S2.006 15 Winter 100 +208 100/15 Summer S2.006 15 Winter 100 +208 100/15 Summer S2.007 15 Winter 100 +208 100/15 Summer S2.008 15 Winter 100 +208 100/15 Summer S5.000 15 Winter 100 +208 100/15 Summer S5.001 15 Winter 100 +208 100/15 Summer S6.002 15 Winter 100 +208 100/15 Summer S6.002 15 Winter 100 +208 100/15 Summer S6.002 15 Winter 100 +208 100/15 Summer S8.000 15 Winter 100 +208 100/15 Summer S8.000 15 Winter 100 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
S1.003 15 Winter 100 +208 100/15 Summer S2.001 15 Winter 100 +208 100/15 Summer S2.002 15 Winter 100 +208 100/15 Summer S2.003 15 Winter 100 +208 100/15 Summer S2.003 15 Winter 100 +208 100/15 Summer S2.004 15 Winter 100 +208 100/15 Summer S2.005 15 Winter 100 +208 100/15 Summer S2.006 15 Winter 100 +208 100/15 Summer S2.007 15 Winter 100 +208 100/15 Summer S2.008 15 Winter 100 +208 100/15 Summer S6.000 15 Winter 100 +208 100/15 Summer S6.000 15 Winter 100 +208 100/15 Summer S6.001 15 Winter 100 +208 100/15 Summer S8.000 15 Winter 100 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
S2.000 15 Winter 100 +208 100/15 Summer S2.001 15 Winter 100 +208 100/15 Summer S2.003 15 Winter 100 +208 100/15 Summer S2.004 15 Winter 100 +208 100/15 Summer S2.005 15 Winter 100 +208 100/15 Summer S3.000 15 Winter 100 +208 100/15 Summer S2.006 15 Winter 100 +208 100/15 Summer S2.006 15 Winter 100 +208 100/15 Summer S2.007 15 Winter 100 +208 100/15 Summer S2.008 15 Winter 100 +208 100/15 Summer S2.007 15 Winter 100 +208 100/15 Summer S2.008 15 Winter 100 +208 100/15 Summer S3.000 15 Winter 100 +208 100/15 Summer S6.001 15 Winter 100 +208 100/15 Summer S6.001 15 Winter 100 +208 100/15 Summer S6.00						
S2.002 15 Winter 100 +20% 100/15 Summer S2.004 15 Winter 100 +20% 100/15 Summer S3.000 15 Winter 100 +20% 100/15 Summer S2.006 15 Winter 100 +20% 100/15 Summer S2.006 15 Winter 100 +20% 100/15 Summer S2.007 15 Winter 100 +20% 100/15 Summer S2.000 15 Winter 100 +20% 100/15 Summer S2.000 15 Winter 100 +20% 100/15 Summer S3.001 15 Winter 100 +20% 100/15 Summer S4.0001 5 Winter<						
S2.003 15 Winter 100 +20% 100/15 Summer S2.004 15 Winter 100 +20% 100/15 Summer S2.005 15 Winter 100 +20% 100/15 Summer S2.006 15 Winter 100 +20% 100/15 Summer S2.006 15 Winter 100 +20% 100/15 Summer S2.007 15 Winter 100 +20% 100/15 Summer S2.008 15 Winter 100 +20% 100/15 Summer S2.001 15 Winter 100 +20% 100/15 Summer S5.000 15 Winter 100 +20% 100/15 Summer S6.000 15 Winter 100 +20% 100/15 Summer S6.001 15 Winter 100 +20% 100/15 Summer S6.002 15 Winter 100 +20% 100/15 Summer S8.0001 5 Winter<						
\$2.004 15 Winter 100 +208 100/15 Summer \$2.005 15 Winter 100 +208 100/15 Summer \$2.006 15 Winter 100 +208 100/15 Summer \$2.006 15 Winter 100 +208 100/15 Summer \$2.007 15 Winter 100 +208 100/15 Summer \$2.008 15 Winter 100 +208 100/15 Summer \$2.007 15 Winter 100 +208 100/15 Summer \$2.008 15 Winter 100 +208 100/15 Summer \$2.001 15 Winter 100 +208 100/15 Summer \$5.001 15 Winter 100 +208 100/15 Summer \$7.000 15 Winter 100 +208 100/15 Summer \$7.001 15 Winter 100 +208 100/15 Summer \$8.001 15 Winter 100 +208 100/15 Summer \$8.001 15 Winter 100 +208 100/15 Summer \$8.000 15 Winter 100 +208 100/15 Summer \$8.00						
S3.000 15 Winter 100 +20% 100/15 Summer S2.005 15 Winter 100 +20% 100/15 Summer S2.006 15 Winter 100 +20% 100/15 Summer S4.000 15 Winter 100 +20% 100/15 Summer S2.008 15 Winter 100 +20% 100/15 Summer S5.001 15 Winter 100 +20% 100/15 Summer S5.001 15 Winter 100 +20% 100/15 Summer S6.000 15 Winter 100 +20% 100/15 Summer S7.001 15 Winter 100 +20% 100/15 Summer S7.001 15 Winter 100 +20% 100/15 Summer S7.001 15 Winter 100 +20% 100/15 Summer S6.001 15 Winter 100 +20% 100/15 Summer S6.001 15 Winter 100 +20% 100/15 Summer S8.000 15 Winter 100 +20% 100/15 Summer S8.001 15 Winter 100 +20% 100/15 Summer S8.00						
S2.006 15 Winter 100 +20% 100/15 Summer S2.007 15 Winter 100 +20% 100/15 Summer S2.008 15 Winter 100 +20% 100/15 Summer S5.001 15 Winter 100 +20% 100/15 Summer S5.001 15 Winter 100 +20% 100/15 Summer S6.000 15 Winter 100 +20% 100/15 Summer S7.001 15 Winter 100 +20% 100/15 Summer S7.001 15 Winter 100 +20% 100/15 Summer S6.002 15 Winter 100 +20% 100/15 Summer S6.002 15 Winter 100 +20% 100/15 Summer S8.000 15 Winter 100 +20% 100/15 Summer S8.001 15 Winter 100 +20% 100/15 Summer S8.001 15 Winter 100 +20% 100/15 Summer S8.001 15 Winter 100 +20%						
S4.000 15 Winter 100 +208 100/15 Summer S2.008 15 Winter 100 +208 100/15 Summer S5.000 15 Winter 100 +208 100/15 Summer S5.000 15 Winter 100 +208 100/15 Summer S5.000 15 Winter 100 +208 100/15 Summer S7.000 15 Winter 100 +208 100/15 Summer S7.001 15 Winter 100 +208 100/15 Summer S7.002 15 Winter 100 +208 100/15 Summer S6.001 15 Winter 100 +208 100/15 Summer S6.002 15 Winter 100 +208 100/15 Summer S8.001 15 Winter 100 +208 100/15 Summer S8.001 15 Winter 100 +208 100/15 Summer S8.001 15 Winter 100 +208 100/15 Summer S1.001 15 Winter 100 +208						
S2.007 15 Winter 100 +20% 100/15 Summer S2.008 15 Winter 100 +20% 100/15 Summer S5.001 15 Winter 100 +20% 100/15 Summer S6.000 15 Winter 100 +20% 100/15 Summer S7.001 15 Winter 100 +20% 100/15 Summer S6.001 15 Winter 100 +20% 100/15 Summer S6.001 15 Winter 100 +20% 100/15 Summer S8.000 15 Winter 100 +20% 100/15 Summer S8.001 15 Winter 100 +20% 100/15 Summer S8.001 15 Winter 100 +20% 100/15 Summer S6.005 15 Winter 100 +20% 100/15 Summer S10.001 15 Winter 100 +20% 100/15 Summer S10.						
S5.000 15 Winter 100 +20% 100/15 Summer S5.001 15 Winter 100 +20% 100/15 Summer S7.000 15 Winter 100 +20% 100/15 Summer S7.001 15 Winter 100 +20% 100/15 Summer S7.002 15 Winter 100 +20% 100/15 Summer S6.001 15 Winter 100 +20% 100/15 Summer S6.001 S Winter 100 +20% 100/15 Summer S6.003 15 Winter 100 +20% 100/15 Summer S8.000 15 Winter 100 +20% 100/15 Summer S8.001 15 Winter 100 +20% 100/15 Summer S8.002 15 Winter 100 +20% 100/15 Summer S8.001 15 Winter 100 +20% 100/15 Summer S10.001 S Winter </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
S5.001 15 Winter 100 +20% 100/15 Summer S7.000 15 Winter 100 +20% 100/15 Summer S7.001 15 Winter 100 +20% 100/15 Summer S7.001 15 Winter 100 +20% 100/15 Summer S6.001 15 Winter 100 +20% 100/15 Summer S6.002 15 Winter 100 +20% 100/15 Summer S6.003 15 Winter 100 +20% 100/15 Summer S8.001 15 Winter 100 +20% 100/15 Summer S8.001 15 Winter 100 +20% 100/15 Summer S8.001 15 Winter 100 +20% 100/15 Summer S6.004 15 Winter 100 +20% 100/15 Summer S10.001 15 Winter 100 +20% 100/15 Summer S10.001 5 Winter	S2.008 1	5 Winter	100	+20%	100/15 Summer	
S6.000 15 Winter 100 +20% 100/15 Summer S7.000 15 Winter 100 +20% 100/15 Summer S7.001 15 Winter 100 +20% 100/15 Summer S7.002 15 Winter 100 +20% 100/15 Summer S6.001 15 Winter 100 +20% 100/15 Summer S6.002 15 Winter 100 +20% 100/15 Summer S6.003 15 Winter 100 +20% 100/15 Summer S6.001 15 Winter 100 +20% 100/15 Summer S8.001 15 Winter 100 +20% 100/15 Summer S8.002 15 Winter 100 +20% 100/15 Summer S8.002 15 Winter 100 +20% 100/15 Summer S9.000 15 Winter 100 +20% 100/15 Summer S6.006 15 Winter 100 +20% 100/15 Summer S10.000 15 Winter 100 +20% 100/15 Summer S11.000 15 Winter 100 +20% 100/15 Summer S11						
S7.000 15 Winter 100 +20% 100/15 Summer S7.001 15 Winter 100 +20% 100/15 Summer S7.002 15 Winter 100 +20% 100/15 Summer S6.001 15 Winter 100 +20% 100/15 Summer S6.002 15 Winter 100 +20% 100/15 Summer S6.003 15 Winter 100 +20% 100/15 Summer S8.000 15 Winter 100 +20% 100/15 Summer S8.001 15 Winter 100 +20% 100/15 Summer S8.001 15 Winter 100 +20% 100/15 Summer S8.001 15 Winter 100 +20% 100/15 Summer S9.000 15 Winter 100 +20% 100/15 Summer S6.006 15 Winter 100 +20% 100/15 Summer S10.000 15 Winter 100 +20% 100/15 Summer S10.001 15 Winter 100 +20% 100/15 Summer S11.001 15 Winter 100 +20% 100/15 Summer S1						
S7.002 15 Winter 100 +20% 100/15 Summer S6.001 15 Winter 100 +20% 100/15 Summer S6.002 15 Winter 100 +20% 100/15 Summer S6.003 15 Winter 100 +20% 100/15 Summer S8.000 15 Winter 100 +20% 100/15 Summer S8.001 15 Winter 100 +20% 100/15 Summer S8.002 15 Winter 100 +20% 100/15 Summer S8.001 15 Winter 100 +20% 100/15 Summer S6.004 15 Winter 100 +20% 100/15 Summer S6.006 15 Winter 100 +20% 100/15 Summer S10.000 15 Winter 100 +20% 100/15 Summer S11.001 15 Winter 100 +20% 100/15 Summer S11.001 S Winte						
S6.001 15 Winter 100 +20% 100/15 Summer S6.002 15 Winter 100 +20% 100/15 Summer S6.003 15 Winter 100 +20% 100/15 Summer S8.001 15 Winter 100 +20% 100/15 Summer S8.001 15 Winter 100 +20% 100/15 Summer S8.002 15 Winter 100 +20% 100/15 Summer S6.004 15 Winter 100 +20% 100/15 Summer S6.004 15 Winter 100 +20% 100/15 Summer S6.005 15 Winter 100 +20% 100/15 Summer S6.006 15 Winter 100 +20% 100/15 Summer S10.000 15 Winter 100 +20% 100/15 Summer S11.001 15 Winter 100 +20% 100/15 Summer						
S6.002 15 Winter 100 +20% 100/15 Summer S6.003 15 Winter 100 +20% 100/15 Summer S8.001 15 Winter 100 +20% 100/15 Summer S8.001 15 Winter 100 +20% 100/15 Summer S8.001 15 Winter 100 +20% 100/15 Summer S8.002 15 Winter 100 +20% 100/15 Summer S9.000 15 Winter 100 +20% 100/15 Summer S9.000 15 Winter 100 +20% 100/15 Summer S6.006 15 Winter 100 +20% 100/15 Summer S10.001 15 Winter 100 +20% 100/15 Summer S11.000 15 Winter 100 +20% 100/15 Summer S11.001 15 Winter 100 +20% 100/15 Summer S11.001 15 Winter 100 +20% 100/15 Summer S11.002 15 Winter 100 +20% <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
S8.000 15 Winter 100 +20% 100/15 Summer S8.001 15 Winter 100 +20% 100/15 Summer S8.002 15 Winter 100 +20% 100/15 Summer S6.004 15 Winter 100 +20% 100/15 Summer S9.000 15 Winter 100 +20% 100/15 Summer S6.005 15 Winter 100 +20% 100/15 Summer S6.006 15 Winter 100 +20% 100/15 Summer S10.000 15 Winter 100 +20% 100/15 Summer S11.000 15 Winter 100 +20% 100/15 Summer S11.001 15 Winter 100 +20% 100/15 Summer S11.002 15 Winter 100 +20% 100/15 Summer S11.002 15 Winter 100 +20% 100/15 Summer S11.003 15 Winter 100 +20% 100/15 Summer S11.004 15 Winter 100 +20%<						
S8.001 15 Winter 100 +20% 100/15 Summer S8.002 15 Winter 100 +20% 100/15 Summer S6.004 15 Winter 100 +20% 100/15 Summer S9.000 15 Winter 100 +20% 100/15 Summer S6.005 15 Winter 100 +20% 100/15 Summer S6.006 15 Winter 100 +20% 100/15 Summer S10.000 15 Winter 100 +20% 100/15 Summer S10.001 15 Winter 100 +20% 100/15 Summer S11.000 15 Winter 100 +20% 100/15 Summer S11.001 15 Winter 100 +20% 100/15 Summer S11.002 15 Winter 100 +20% 100/15 Summer S11.002 15 Winter 100 +20% 100/15 Summer S11.002 15 Winter 100 +20% 100/15 Summer S11.004 15 Winter 100 +20% 100/15 Summer S11.005 15 Winter 100 +20% 100/15 Summer S11.006 15 Winter 100 +20% 100/15 Summer S12.000 15 Winter 100 +20% 100/15 Summer						
\$8.002 15 Winter 100 +20% 100/15 Summer \$6.004 15 Winter 100 +20% 100/15 Summer \$9.000 15 Winter 100 +20% 100/15 Summer \$6.005 15 Winter 100 +20% 100/15 Summer \$6.006 15 Winter 100 +20% 100/15 Summer \$6.000 15 Winter 100 +20% 100/15 Summer \$10.000 15 Winter 100 +20% 100/15 Summer \$10.001 15 Winter 100 +20% 100/15 Summer \$11.000 15 Winter 100 +20% 100/15 Summer \$11.000 15 Winter 100 +20% 100/15 Summer \$11.001 15 Winter 100 +20% 100/15 Summer \$11.002 15 Winter 100 +20% 100/15 Summer \$11.002 15 Winter 100 +20% 100/15 Summer \$11.003 15 Winter 100 +20% 100/15 Summer \$11.004 15 Winter 100 +20% 100/15 Summer \$11.005 15 Winter 100 +20% 100/15 Summer \$12.000 15 Winter						
S6.004 15 Winter 100 +20% 100/15 Summer S9.000 15 Winter 100 +20% 100/15 Summer S6.005 15 Winter 100 +20% 100/15 Summer S10.000 15 Winter 100 +20% 100/15 Summer S10.000 15 Winter 100 +20% 100/15 Summer S10.001 15 Winter 100 +20% 100/15 Summer S11.000 15 Winter 100 +20% 100/15 Summer S11.000 15 Winter 100 +20% 100/15 Summer S11.001 15 Winter 100 +20% 100/15 Summer S11.002 15 Winter 100 +20% 100/15 Summer S11.002 15 Winter 100 +20% 100/15 Summer S11.002 15 Winter 100 +20% 100/15 Summer S11.004 15 Winter 100 +20% 100/15 Summer S11.005 15 Winter 100 +20% 100/15 Summer S12.000 15 Winter 100 +20% 100/15 Summer S12.001 15 Winter 100 +20% 100/15 Summer S12.001 15 Winter 100 +20% 100/15 Summer <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
S6.005 15 Winter 100 +20% 100/15 Summer S6.006 15 Winter 100 +20% 100/15 Summer S10.000 15 Winter 100 +20% 100/15 Summer S10.001 15 Winter 100 +20% 100/15 Summer S11.001 15 Winter 100 +20% 100/15 Summer S11.001 15 Winter 100 +20% 100/15 Summer S11.001 15 Winter 100 +20% 100/15 Summer S11.002 15 Winter 100 +20% 100/15 Summer S11.003 15 Winter 100 +20% 100/15 Summer S11.004 15 Winter 100 +20% 100/15 Summer S11.006 15 Winter 100 +20% 100/15 Summer S12.000 15 Winter 100 +20% 100/15 Summer S12.001 15				+20%	100/15 Summer	
\$6.006 15 Winter 100 +20% 100/15 Summer \$10.000 15 Winter 100 +20% 100/15 Summer \$10.001 15 Winter 100 +20% 100/15 Summer \$11.000 15 Winter 100 +20% 100/15 Summer \$11.001 15 Winter 100 +20% 100/15 Summer \$11.001 15 Winter 100 +20% 100/15 Summer \$11.002 15 Winter 100 +20% 100/15 Summer \$11.002 15 Winter 100 +20% 100/15 Summer \$11.003 15 Winter 100 +20% 100/15 Summer \$11.004 15 Winter 100 +20% 100/15 Summer \$11.006 15 Winter 100 +20% 100/15 Summer \$12.000 15 Winter 100 +20% 100/15 Summer \$12.001 15						
S10.000 15 Winter 100 +20% 100/15 Summer S10.001 15 Winter 100 +20% 100/15 Summer S11.000 15 Winter 100 +20% 100/15 Summer S11.001 15 Winter 100 +20% 100/15 Summer S11.001 15 Winter 100 +20% 100/15 Summer S11.002 15 Winter 100 +20% 100/15 Summer S11.002 15 Winter 100 +20% 100/15 Summer S11.003 15 Winter 100 +20% 100/15 Summer S11.004 15 Winter 100 +20% 100/15 Summer S11.006 15 Winter 100 +20% 100/15 Summer S12.000 15 Winter 100 +20% 100/15 Summer S12.001 15 Winter 100 +20% 100/15 Summer S12.002 15 Winter 100 +20% 100/15 Summer S13.000 15 Winter 100 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
S11.000 15 Winter 100 +20% 100/15 Summer S11.001 15 Winter 100 +20% 100/15 Summer S11.002 15 Winter 100 +20% 100/15 Summer S11.003 15 Winter 100 +20% 100/15 Summer S11.003 15 Winter 100 +20% 100/15 Summer S11.004 15 Winter 100 +20% 100/15 Summer S11.005 15 Winter 100 +20% 100/15 Summer S11.006 15 Winter 100 +20% 100/15 Summer S12.000 15 Winter 100 +20% 100/15 Summer S12.001 15 Winter 100 +20% 100/15 Summer S13.001 15 Winter 100 +20% 100/15 Summer S13.002 15 Winter 100 +20% 100/15 Summer S13.002 15						
S11.001 15 Winter 100 +20% 100/15 Summer S11.002 15 Winter 100 +20% 100/15 Summer S11.003 15 Winter 100 +20% 100/15 Summer S11.004 15 Winter 100 +20% 100/15 Summer S11.005 15 Winter 100 +20% 100/15 Summer S11.006 15 Winter 100 +20% 100/15 Summer S11.006 15 Winter 100 +20% 100/15 Summer S12.000 15 Winter 100 +20% 100/15 Summer S12.001 15 Winter 100 +20% 100/15 Summer S12.002 15 Winter 100 +20% 100/15 Summer S13.001 15 Winter 100 +20% 100/15 Summer S13.002 15 Winter 100 +20% 100/15 Summer S13.002 15	S10.001 1	5 Winter	100	+20%	100/15 Summer	
S11.002 15 Winter 100 +20% 100/15 Summer S11.003 15 Winter 100 +20% 100/15 Summer S11.004 15 Winter 100 +20% 100/15 Summer S11.005 15 Winter 100 +20% 100/15 Summer S11.006 15 Winter 100 +20% 100/15 Summer S12.000 15 Winter 100 +20% 100/15 Summer S12.001 15 Winter 100 +20% 100/15 Summer S12.002 15 Winter 100 +20% 100/15 Summer S13.000 15 Winter 100 +20% 100/15 Summer S13.001 15 Winter 100 +20% 100/15 Summer S13.002 15 Winter 100 +20% 100/15 Summer S13.002 15 Winter 100 +20% 100/15 Summer S13.002 15						
S11.003 15 Winter 100 +20% 100/15 Summer S11.004 15 Winter 100 +20% 100/15 Summer S11.005 15 Winter 100 +20% 100/15 Summer S11.006 15 Winter 100 +20% 100/15 Summer S12.000 15 Winter 100 +20% 100/15 Summer S12.001 15 Winter 100 +20% 100/15 Summer S12.001 15 Winter 100 +20% 100/15 Summer S12.002 15 Winter 100 +20% 100/15 Summer S13.000 15 Winter 100 +20% 100/15 Summer S13.001 15 Winter 100 +20% 100/15 Summer S13.002 15 Winter 100 +20% 100/15 Summer						
S11.005 15 Winter 100 +20% 100/15 Summer S11.006 15 Winter 100 +20% 100/15 Summer S12.000 15 Winter 100 +20% 100/15 Summer S12.001 15 Winter 100 +20% 100/15 Summer S12.002 15 Winter 100 +20% 100/15 Summer S13.000 15 Winter 100 +20% 100/15 Summer S13.001 15 Winter 100 +20% 100/15 Summer S13.002 15 Winter 100 +20% 100/15 Summer S13.002 15 Winter 100 +20% 100/15 Summer						
S11.006 15 Winter 100 +20% 100/15 Summer S12.000 15 Winter 100 +20% 100/15 Summer S12.001 15 Winter 100 +20% 100/15 Summer S12.002 15 Winter 100 +20% 100/15 Summer S13.000 15 Winter 100 +20% 100/15 Summer S13.001 15 Winter 100 +20% 100/15 Summer S13.002 15 Winter 100 +20% 100/15 Summer S13.002 15 Winter 100 +20% 100/15 Summer						
S12.000 15 Winter 100 +20% 100/15 Summer S12.001 15 Winter 100 +20% 100/15 Summer S12.002 15 Winter 100 +20% 100/15 Summer S13.000 15 Winter 100 +20% 100/15 Summer S13.001 15 Winter 100 +20% 100/15 Summer S13.002 15 Winter 100 +20% 100/15 Summer S13.002 15 Winter 100 +20% 100/15 Summer						
S12.001 15 Winter 100 +20% 100/15 Summer S12.002 15 Winter 100 +20% 100/15 Summer S13.000 15 Winter 100 +20% 100/15 Summer S13.001 15 Winter 100 +20% 100/15 Summer S13.002 15 Winter 100 +20% 100/15 Summer S13.002 15 Winter 100 +20% 100/15 Summer						
S13.000 15 Winter 100 +20% 100/15 Summer S13.001 15 Winter 100 +20% 100/15 Summer S13.002 15 Winter 100 +20% 100/15 Summer	S12.001 1	5 Winter	100	+20%	100/15 Summer	
S13.001 15 Winter 100 +20% 100/15 Summer S13.002 15 Winter 100 +20% 100/15 Summer						
S13.002 15 Winter 100 +20% 100/15 Summer						
			©198	2-2011	Micro Draina	age Ltd

Cronin & Sutton Consulting		Page 15
31a Westland Square		
Pearse Street		
Dublin 2		
Date 12/03/2025 17:17	Designed by Adelina.Delieva	
File STORM P03.MDX	Checked by	
Micro Drainage	Network W.12.6	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

		Return Climate	First X	First Y	First Z	0/F	Lvl
PN	Storm	Period Change	Surcharge	Flood	Overflow	Act.	Exc.

S13.003 15 Winter 100 +20% 100/15 Summer

	US/MH	Water Level	Surch'ed	Flooded Volume	Flow /	O'flow	Pipe Flow	
PN	Name	(m)	Depth (m)	(m³)	Cap.	(1/s)	(1/s)	Status
S1.000	S1	58.393	1.453	0.000	0.65	0.0	55.9	FLOOD RISK
S1.001	S2	58.232	1.647	0.000	1.50	0.0	102.3	FLOOD RISK
S1.002	S3	57.530	1.239	0.000	1.95	0.0	135.7	FLOOD RISK
S1.003	S4	56.463	0.441	0.000	2.14	0.0	148.4	SURCHARGED
S2.000	S5	58.340	1.065	0.000	0.60	0.0	52.0	FLOOD RISK
S2.001	S6	58.218	1.243	0.000	0.62	0.0	80.1	FLOOD RISK
S2.002	S7	58.114	1.365	0.000	0.95	0.0	89.0	FLOOD RISK
S2.003	S8	58.035	1.352	0.000	1.00	0.0	164.3	SURCHARGED
S2.004	S9	57.867	1.351	0.000	0.89	0.0	214.9	SURCHARGED
S3.000	S10	58.184	1.055	0.000	1.42	0.0	54.5	FLOOD RISK
S2.005	S11	57.599	1.417	0.000	2.03	0.0	330.4	SURCHARGED
S2.006		56.675	0.706	0.000	2.18			SURCHARGED
S4.000		58.023	1.323	0.000	2.81			FLOOD RISK
S2.007	S14	56.467	0.541	0.000	2.41	0.0	470.9	SURCHARGED
S2.008		56.033	0.180	0.000	2.20	0.0		SURCHARGED
S5.000		57.435	0.505	0.000	1.59	0.0		SURCHARGED
S5.001		56.861	0.148	0.000	2.21	0.0		SURCHARGED
S6.000		57.954		0.000	0.72	0.0		SURCHARGED
S7.000		57.966	1.216	0.000	0.25	0.0		FLOOD RISK
S7.001		57.924	1.353	0.000	0.51	0.0		FLOOD RISK
S7.002		57.877	1.344	0.000	0.79	0.0		FLOOD RISK
S6.001		57.800	1.441	0.000	1.35			FLOOD RISK
S6.002		57.381	1.245	0.000	1.23			FLOOD RISK
S6.003		57.123	1.163	0.000	1.32			FLOOD RISK
S8.000		57.416	1.241	0.000	0.64	0.0		FLOOD RISK
S8.001		57.342	1.334	0.000	1.05	0.0		SURCHARGED
S8.002		57.268	1.306	0.000	1.27	0.0		SURCHARGED
S6.004		56.971	1.192	0.000	1.92			FLOOD RISK
S9.000		56.903	0.203	0.000	1.31	0.0		SURCHARGED
S6.005		56.277	0.671	0.000	2.36			SURCHARGED
S6.006		55.848	0.317	0.000	2.57			SURCHARGED
S10.000		57.598 56.670	0.353 0.156	0.000	1.10 1.85			SURCHARGED SURCHARGED
\$10.001 \$11.000		58.677	1.002	0.000	0.69	0.0		FLOOD RISK
S11.000		58.452	1.002	0.000	1.43	0.0		SURCHARGED
S11.001		57.804	0.911	0.000	2.00			SURCHARGED
S11.002		57.684	0.818	0.000	1.22			SURCHARGED
S11.003		57.351	0.697	0.000	1.49			SURCHARGED
S11.005		57.212	0.615	0.000	1.75			SURCHARGED
S11.005		56.603		0.000				SURCHARGED
S12.000		58.294	0.519	0.000	0.82			SURCHARGED
S12.000		58.150	0.618	0.000	1.27			SURCHARGED
S12.001		57.290	0.280	0.000	2.77			SURCHARGED
S13.000		59.150	0.850	0.000	1.69			SURCHARGED
S13.001		58.679	0.539	0.000	1.45			SURCHARGED
S13.001		58.422	0.422	0.000	1.27			SURCHARGED
S13.003		57.918	0.218	0.000	2.30			SURCHARGED